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Page 6, line 21, add -j-a.y/i l:i

-
to the left member of the equation.

Page ii, line 4, in place of "PG(2,2")" read 'TG(2,2 )."
Page 12, line io, in place of 'Vs'—**-f-*8" read "pxu'—ixt+xt

"

Page 12, line II, in place of "(/-J-p-fO" read
"
(p*-|_^-f-i) /•

Page 1 8, line 30, in place of "0//" read "or."

Page 20, line 23, In place of '7,* read
U
I3

"
(twice).
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GEOMETRY AND COLLINEATION GROUPS OF THE FINITE

PROJECTIVE PLANE PG (2,2-).*

§1. Definition of a Finite Projective Plane.

§2. Preliminary Theorems.

§3. Types of Collineations in PG (2,2
n
).

£4. Cyclic Groups in PG (2,2-).

§o. The Group of Determinant Unit}'
—Go 0160 -

§0. The Group Leaving Invariant an Imaginary Triangle—G63 .

$7. Invariant Real Configurations and Their Groups.

§8. Subgroups of the Group G2880 Which Leaves a Line Invariant.

§/. Definition of a Finite Projective Plane.
•

The definition and general properties of finite projective spaces together with

references to the literature of the subject may be found in a paper by veblen

and bussey in the Transactions of the American Mathematical Society, Vol. 7,

pp. 241 -259. They used the symbol PG(k,p
n
), where k,p,n are integers and p is

a prime, to indicate a finite projective space of k dimensions having p
n
-|- 1 points

to the line. It is the purpose of this paper to discuss some of the properties of the

PG(2,2") and to determine all subgroups of the group of projective collineations

in PG(2,2
2
).

We give a brief summary of the analytic and synthetic definitions of a finite

projective plane.

If x
x
.x.,,x.v are marks of a Galois fieldf [designated by GF(pn

)] of

order p
n there are (p"

n—l)/(p—l)=P" n
-f-P

n+l elements of the form (xt>xstjr,)

provided that the elements (x^x.^x.^) and (Ix^lx^lx^) indicate the same element

* Presented to the American Mathematical Society, April 29, 1911
+ For definition and properties of a Galois field see E. H. MOORE, Subgroups of the

Generalized Fjnite Modular Group, University of Chicago Dec. Pub, Vol. IX., pp. 141-

156; L. E. DICKSON, Linear Groups, pp. 1-14.

28802 t



2 U. G. Mitchell: Geometry and

when / is any mark other than zero and provided that (0,0,0). be excluded from

consideration. These elements constitute a finite projective plane if the equation

M,X y -f
- WoX2+ « 3*3=O

[the domain for coefficients and variables being the GF(pn
)] be taken as the equa-

tion of a line except when u
i
=u2=u^=o. The line is denoted by the symbol

(w,,h,,w 3 ) and the symbols (m„« 2,m 3 ) and (/«1,/«2,/» R ) where / is any mark other

than zero denote the same line. The points of a line are those points whose co-

ordinates (x ,,*,,*,,) satisfy its equation.

Taking 0,1, i and r for the marks of the GF (2
2
) where i is defined as a root

of the equation r=;'+ / and hence r*=/ (mod. 2) the PG(2,2
:

) so defined may
be exhibited in the table of alignment given on the opposite page. In the analytical

processes of PG(2,2
n
) no distinction need be made between plus and minus signs

since -1=1 (mod. 2).

Synthetically a finite projective plane may be defined as a set of elements which

for suggestiveness are called points, arranged in subsets called lines and subject to

the following conditions:

I. The set contains a finite number, greater than one, of lines, and each line

contains p
n
-f-i points (p and n integers and p a prime).

II. If A and B are distinct points there is one and only one line that contains

A and B.

III. All the points considered are in the same plane.

From this definition it follows* that the principle of duality is

valid in the plane so defined, that there are p
n
-\-l lines through each point and

that the total number of points in the plane is p
2n+pn

+l.
In a PG (2,2

2
) there are then 21 points and 21 lines. The following set of ele-

ments arranged in 21 lines of 5 elements each will be seen to satisfy the given

synthetic definition and to be identical with the table given opposite.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 G 1 2 3

14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12' 13

16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

§2. Preliminary Theorems.

Theorem 1. In PG(2,2n
) the diagonal points of a complete quadrangle

are collinear.

Proof. Let three of the vertices, A, B and C of the quadrangle (Fig. 1) be

taken as the triangle of reference and let the fourth vertex, D, be assigned the co-

ordinates (1,1,1). The intersections of AB with CD, AC with BD and AD with

*
Cf. VEBLEN and YOUNG, Projective Geometry, Vol. I, pp. 16-17.
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4 U. G. Mitchell: Geometry and

3C determine the diagonal points P,Q,R as (1,0,1), (i,J,o) and

(o,/,/) respectively, which are collinear on the line x
1 -\-x2 -\-x3=^0.

B(oo0

F1G.1.

Since the quadrangle A,B,C,D is projectively equivalent to any other quad-

rangle in the plane the proof is complete.

The line joining the diagonal points of any complete quadrangle will be re-

ferred to as the diagonal line of the quadrangle.

Definition of conic. A point conic is defined as the locus of the points of in-

tersection of corresponding lines in two projective non-perspective pencils of

lines. A line conic is defined as consisting of the lines that join corresponding

points in two projective non -perspective ranges of points. In PG (2,2
n
) the

number of points in a point conic is 2n
~|-1, the number of lines in a pencil, and

the number of lines in a line conic is 2n
-j-l, the number of points in a range.

Hence in PG(2,2
2
) a point conic consists of any five points no three of which

are collinear and a line conic consists of any five lines no three of which are con-

current.

A tangent to a point conic is defined as a line which has one and only one

point in common with the conic. There is one and only one tangent at a given

point on a conic since there are 2n -j-l lines through the point and 2n lines join-

ing it to other points of the conic.

By taking the equations of two projective pencils of lines XP-\-/xQ=o and

\P'-\-lxQ'=o [P=0, Q*=0, P'=o, Q'=o being equations in abbreviated no-

tation of linej in PG(2,L
;:

) and A and /x marks of the GF(2n
)] and eliminating

A and /x it is readily shown that the equation of a point conic is a homogen-
eous equation of the second degree in three variables with coefficients in the

GF(2n
). Similarly, using line coordinates it may be shown that the equation
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of a line conic is also a homogeneous equation of the second degree in three vari-

ables with coefficients in the GB (2*).

Theorem 2. Every equation of the form

i>i

where the coefficients are marks of the GF(.2
n
) is satisfied by the coordinates of

at least one point in PG(2,2
n
).

Proof. Suppose neither «,, nor a, 2 to be zero. Taking x3=i the equation

reduces to au x 1

2
-{-(a l2x2 -\-a i3 )x 1 -{-a22x2

2

-\-a23x2 -\-a33=o which is satisfied by

and x2
== — Moreover, since in the GF(2") every mark satisfies the

ai2

n

equation x 2 =* it is a perfect square and since —/=/ (mod. 2) its square root

is unique. These values for x
t
and x2 are therefore uniquely determined and

lie in the GF(2"). If alt=0, F(x l ,x._i ,x.d)=o is satisfied by (i,o,o) and if

(in ^t o and a lo=0 h (x^x^.x^^o is satisfied by ( \ ~, i
1

' )-

Theorem 3. Every equation of the form

1,2,3,

F(x 1 ,x2,xJ= S tfij*i*j=0 dgj,>

i,j

where x,,x 2 ,x3 are point coordinates and the coefficients are marks of the GF(2 Ti

)

represents a point conic in PG(2,2
n
).

Proof. Since by the previous theorem F(x 1
x2 ,x3)=o is satisfied by at least

one point in PG(2,2
n
), by means of a linear transformation of that point into the

point (o,o, i ) F(x^,x2 ,x3 )=o can be transformed into the equation

F, (*,,*,,,*,)
= b 11x 1

2

-{-b 12x l
x2 -±b22x2

2+b x3x x
x3+b 2ix?x3=0

This equation may be written

*i(*u*iH-*ia*a+*ia*s) + **(**2*iH-*i8*«)""0

which is seen to be the locus of points of intersection of corresponding lines in the

two projective pencils of lines

lxi+m (*u*l-|-*ia*a+*i3*a) =o and lx x-\-m (b22x2 -{-b23x3)=o

Hence F(x lt
x2,x3)=o represents the locus previously defined as a point conic.

Theorem 4. In PG(2,2
n
) all tangents to the point conic

1,2,3,

F(x ltx2,x3)== 2 a, J x,jf ]
=o (^i)

i.j

are concurrent and their point of concurrence is (a23 /i l3 ,a ,.,).
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Proof. The line f^-f r2*2+f3*3==0, the domain for variables and coefficients

being the GF(2"), will be a tangent to the conic F ( Xl ,x2 ,xs)=0 in case it has but

one point in common with the conic. Eliminating x
t
from the two equations gives

(a„<V + a l2c x
c2 ) x2

2
-f cx (fl 12f3 + a lsc2 + ancx )

x2x3 +
(<*11<V + "l3f l

f 3+ <*MCl) *32=0

The condition that this shall be a perfect square is (assuming c
x
not o)

<V»28 + *i3f2 + <y*i2=0 which is seen to be the condition that the line

H*\ + f2*2 + czx3T=° Pass through the point (a 23 ,a l3,a12 ). If cx—O either

f2 or r3 is not zero and x2 or x3 can be eliminated.

If an outside point of a conic be defined as any point of intersection of tangents

to the conic, it follows that in PG(2,2
n
) a conic has but one outside point. Hence

the point of concurrence of tangents to a conic will be referred to as the outside

point of the conic.

Corollary I. Every line through the outside point of a conic is a tangent to the

conic.

Corollary 2. Through any point in PG (2,2
n
) other than the. outside point of

a given conic passes one and but one tangent to the conic.

Corollary J. In PG(2,2
n
) the condition for degeneracy of a conic is that the co-

ordinates of its outside point satisfy its equation.

For the general conic F(jf,,Av.Ar3)=o the condition is

Corollary 4. In PG(2,2 ri

) six and but six points can be chosen such that no

three of the set are collinear.

For, any five points no three of which are collinear determine a conic which to-

gether with its outside point constitutes a set of six points no three of which are

collinear. The existence of any other point not collinear with any two of these

contradicts Corollary 2 above.

Corollary 5. In PG(2,2
2
) the diagonal line of the complete quadrangle of any

four points of a conic is the tangent of the fifth point.

For, in PG(2,2
2
) there are five points to the line and hence the diagonal line

contains two points other than the diagonal points. These two points together

with the four points determining the quadrangle form a set of six points no three

of which are collinear. It follows, then, from Corollary 4 that the two points on the

diagonal line arc the fifth point and the outside point respectively of any conic

passing through the points of the quadrangle.

§ 3' Types of Collintations in PG(2,2n
).

Transformations on the line. To determine the one-dimensional transformations

in PG(2,2
n
) it is sufficient to consider the transformations of points on the line

x3=0 and any point on it can be represented by two coordinates. Hence the gen-
eral projective transformation of points on a line in PG(2,2

n
) may be written

T: pAr,'=fl,,Ar 1 -{-ff, 2Af2 , {'1=1,2),
where the determinant

A--=|<7,j] of the transformation is not zero and the
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domain for variables and coefficients is the GF(2n
). In the usual man-

ner we put x
i
'=x

l , (*—1,2) in order to determine the fixed elements and con-

sider the characteristic equation

/>

2+("u+*22)p+A=0 C 1 )

which expresses the condition for consistency.

According as (1) has one, two, or no roots in the GF(2n
) T has one, two, or no

fixed points in PG(2,2
n
) and is designated correspondingly as parabolic, hyper-

bolic , or elliptic. In PG( 2,2") there are 2n (2
n
-l) equations of the form (1) since A is

not zero and there are 2n-l marks other than zero in the GF(2n
). One half of these

equations have both roots in the GF(2n
) and the other half have no roots in the

GF(2n
). Of those having roots in the GF(2n

), 2n-l have coincident and

(2
n
-l) (2

n_1
-l) have distinct roots. The necessary and sufficient condition that

(1) shall have coincident roots is that an^Etf22 (mod.2). When tfn ==tf22 is substi-

tuted in T it is found that T2 becomes the identical collineation and hence every

parabolic transformation in PG(2.2
n
) is of period two. An hyperbolic transforma-

tion permutes 2n-l points and hence its period is 2n-l or some factor of 2n-l.

Similarly the period of an elliptic transformation must be 2n —
(-1 or some factor

of 2n+l.

Suppose (1) to be irreducible in the GF(2n
). From the theory of Galois fields

we know that- its roots then are marks p lt p*
n

of the GF(22n
) conjugate with

respect to the GF(2n
). Substituting these values in T we find the invariant

points of T to be (« 12,a 1 ,-j-p 1 ) and (tz12,all -\-p i

2t>
). There are, therefore, on the

line 2n
(2

n-l) points of PG(2,2
2n

) (referred to as "imaginary"' points) arranged

in 2n_1 (2
n
-l) pairs of conjugate points which figure as the double points of the

elliptic transformations. Hence in PG(2,2
2
) there are six such pairs on each line.

Ar. in ordinary projective geometry it can be proved that any three points on the

line in PG(2,2
n
) can be transformed into any other three points of the line and

that if three points of the line are fixed all points of the lin** are fixed. From this

it follows that the number of parabolic transformations is 22n-
1, of hyperbolic

transformations is 2"- 1

(2
n
-2) (2

n
-f1) and of elliptic transformations is 22n

(2
n
-l)/2.

The total number of collineations on the line is the total number of distinct trans-

formations T having coefficients in the GF(2n
) and determinant not zero. This

Is determined to be 2n (2
2n
-l).

In PG(2,2
2
) according to the above there ore 60 transformations on the line

and of these 15 are parabolic, 20 hyperbolic and 24 elliptic. Since the total

group is of order 60 and can be exhibited as permutations of the five points df

the line, it must be the alternating group on five symbols and hence its subgroups

ere well known. They will, however, be enumerated later in determining the

groups which leave a line invariant.

Transformations in the plane. The general linear homogenous transformation

in PG(2,2
n
) may be written

J, :Px i
'=a ilx l -\-a i2x2+a i3

x
3 , i=i,2,3,
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where the determinant A=|«u| of the transformation is not zero and the

domain for the coefficients is the GF(2n
). To determine the invariant

points we set x\=x u (i=l,2,3) and obtain the characteristic cubic

p
> + («n-M„+«3s) p

2 + (^u+^m+^ss) p+A=o (2)

where An is the co-factor of a^ in A—|tfjj|. Since there are 2n marks in the

GF(2») there are 22n (2
n
-l) equations of the form (2) belonging to the

GF(2n
). Of these 2"-l have all three roots coincident, (2

n
-l) (2

n
-2) two roots

coincident and the other distinct, (2
n—

1) (2
n—2(2

n—3)/3 \ all three roots dis-

tinct, and 2"(2
n
-l)7'2 one root in the GF(2n

) and two roots in the GF(22n
) but

conjugate with respect to the GF(2n
). These last are made up of the products

of the 2n—1 linear factors in GF(2*) with the 2"(2"-
1

)/2 irreducible quadratics

which appeared as characterictic equations of transformations on the line. There

are then 2"(2»—1)(2B+1—l)/3cubics (2) having roots in GF(2") or GF(2-»).

The remaining 2n (2-"-l)/3 are irreducible in the GF(2") but from the theory of

Galois fields* it follows that their roots are marks of the GF(23n
) conjugate with

respect to the GF(2n
). If, therefore, A be a root of an irreducible cubic belonging

to the GF(2n
) its other roots are A2

"

and A2
"", where A is a mark of the GF(23n

).

If we put Xi'=x u ( ;=1,2,3) in T, and substitute A for p we obtain

Xl :^,:at3=(^ ]1 +<72:,A+^,,A+A'') :(4 12+a21k) :(// 1 ,,+« ;1A)

as the corresponding invariant point. The other invariant points are then neces-

sarily the points obtained by substituting for A in this expression A" and A :;

re-

spectively. Hence every transformation T, whose characteristic equation (2) is

irreducible in the GF (2
n
) leaves invariant a triangle in PG(2,2

3n
) which will be

designated as an imaginary triangle to indicate that it is not in PG(2,2
n
).

Corresponding to the three cases in which the characteristic equation (2) has

three distinct roots there are then three types of transformations having for in-

variant figure a triangle. These will be designated as type I,„ type I,, type I
3 ac-

cording as the invariant triangle has none, one, or three of its vertices in PG(2,2
n
).

If the equation (2) has two roots coincident the corresponding collineation is

designated type II and leaves invariant two points and by duality two lines. Its

invariant figure has two points on one line and two lines on one point. If the

three roots of (2) coincide the corresponding transformation leaves invariant a

lineal element and is called type III. Two special cases of the«e will be classified

as separate types because of their importance. A transformation other than the

identity which leave* invariant all points of a line / called the axis and all lines

through a point P called the center, is called a homology or type IV. Such trans-

formations appear among the powers of those. of types Ij and II. A transforma-

tion, other than identity, which leaves invariant all points of a line / and all lines

through a point P on / is called an elation or type V. The point P and the line

Cf. Dickson, 1. c, p 21 and p. 53.
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/ are called the center and axis, respectively, of the elation. Such transformations

appear among the powers of those of types II and III.

The invariant figures of the different types are shown in Fig. 2. Fixed lines

which are imaginary are dotted and fixed points which are imaginary are left

open.

\/

/ \

m

The following formulae* for the number of transformations of each type in

PG(2,2
n
) are readily obtained:

Cf. Dickson, 1. c., pp. 237-239.
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Nl =2< n
(
2 2"—

i)
2
/3

•

Nl1=2*"(2
3n—

1) (2
n—

1) 7 2

Ni3
=23n

(2
2n
-f-2

n
+l) (2"+l) (2

n—
2) (2

n—3) /«

Nn=22n
(2

3n—
1) (2M-1) (2

n—2)

Nni=2n
(2

3n—
1) (2

2"—
1)

Niv=22n
(2

2n
-|-2

n
-f-l) (2

n—
2)

Nv=(23n—
1) (2

n
-j-l)

Identlty=l

Total=23n
(
23n—1

) ( 2
2n—1 )

According to these formulae the order of the total group of PG(2,2
:

) is 60480

distributed as follows:

Ni =19200

Ni1
=24192

Ni3
= 2240

Nn=lC080
Nin=3780
Niv= 672

Nv= 315

Identity= 1

Total=60480

The group of all projective transformations in PG(2,2
2
) will be designated

aS VJ60480'

§4. Cyclic Groups in PG(2,2
2

).

We wish to determine in detail the path-curves and periodicity of each of the

types in PG(2,2
2
). In so doing we shall at the fame time determine all of the

cyclic subgroups.

Type I Consider the collineation

T : px2'=x,-\-x2 -\-x3

The determinant of T is A=r. Its characteristic equation p
3

-\-ip
2
-\-i

2

p-\-

r=0 is irreducible in the GF(22
) and has for roots ^47^ r

'9
,^

62 where v is a

primitive root of the GF(28
)* and hence v2i

=i, v63=l. The invariant points

cf T are, therefore, A„=(l,w
9
,v

7
), B ^-:(1,^V

28
) and C

(^(l,v
1V48

). T is of

period 21 and permutes the points or PG(2,2
2
) in the order of their numbering

in the table of alignment. There is, accordingly, some power of T which will

transform any given point of PG(2,2
2
) into any other given point of PG(2,2

2
).

To show that every collineation of type I in PG(2,2
2
) is conjugate to some

* For Galois field tables, see an article by W. H. Bussey, in the Bull. Amer. Math. Soc,

Vol. XI, p. 27.
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power ofT, it isonly necessary to show that any triangleA= ( A, ,A2 ,A3 ) , B= ( A,
4
,A2

4
,A8

4
) ,

CblVViVe
) where X^A, are any three marks in the GF(2«) linearly

independent with respect to the GF(22
), can be transformed into A ,B ,C ,

re-

spectively, by a transformation in PG(2,2
n
). The condition that A,,A 2 ,A3 be lin-

early independent with respect to the GF(22
) is necessary because it will be ob-

served that if the coordinates of the point A satisfied the equation a
1
x

l+a2x2 -\-

n^c^'O those of B and C would also satisfy the equation

2 4

ya x
x

x -\-a2x2 -\-azxz )
2 as (a^^a^-^a^) 2 «(«1;r1-f<i,*1+<i,*,)aB0,

and any transformation leaving A, B and C invariant would leave invariant a

line of PG(2,2
2

) and therefore not be of type I .

;—3
The conditions that T=p*,'=2/* lj

*
j , (i—12,3), |<7,,|

not o, where every a ti

j—l
is in the GF(2 2

) shall transform A into A are

«.», A,+«
.•,oA2+fl33A3=*>

,u
( fl21A, +tf22A2 -|-fl23A3 ) )

"

which raised to the 2 2 and 24
powers, are seen to be the conditions that T trans-

form B to B and C and C . In (4) we may assign a3i , a32 and 33 arbitrarily

in the GF(22
) provided not all are taken as zero. We then have fl31 Aj-(-fl3 2A2+

a33^3==vk some mark other than zero of the GF(26
). Since A,,A2 ,A3 are three

marks of the GF(26
) linearly independent with respect to the GF(2 2

) it is pos-

sible to choose an ,i l2 and alZ within the GF(2 2
) such that «,,A 1 +fl 12A2 -|-«i3A3

is any mark of the GF(2 <1

.)* Accordingly we take «,,,«, 2 and a13 such that

anK~\~ a
\ 2^2~f- tf i3A3=*>

k " 7
«'nd similarly «._,,,

a 22 and a
2

.A such that tfnA1-{-AtaAs
- ,

ras«^a
=rk ~61

. The desired transformation T is thereby determined within the

GF(2 2
). Moreover the determinant of T is not zero since

tf 1I A 1

-
r-c 12A2+tf ]3A3=i;

k- 7

tf21A,+a22A, -4- fl 2SA3=»
k-".

«si A, +a.i2\2+a3
.

A\3=v*
form a set of simultaneous non-homogeneous equations in APA2 and A3 .

The 21 powers of T form a cyclic subgroup of G0048t and since the triangle

ABC can be chosen in 28 (2*-l) (2*-l)/3 different ways there are 960 such conju-

gate cyclic subgroups in G60480 .

Since the determinant of T is r the determinant of T 2
is i*=i and the de-

terminant of T,,
3

is 1. The powers of T
, then, which are also powers of

T 3 and no others are of determinant unity. The group G 21 (cyc. I„) consisting of

the 21 powers of T contains accordingly a self-conjugate subgroup of order 7

consisting of the 7 powers of T„ 3
. G„„ 4S1) must contain 960 such cyclic subgroups.

Again, T 7
is of period 3. Hence, G2! (eye. I ) contains a cyclic subgroup of

order 3 which must also be self-coujugate since no others powers of T„ than pow-

ers of T 7 are of period 3. G60480 must contain 960 such conjugate subgroups.
*
Cf. Dickson, 1. c, p. 49
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T 7 must permute all points of PG(2,2
2
) in triangles since if it permuted any

three collinear points among themselves it would leave invariant the line joining

them. It will be seen later (in discussing the simple group G1C8 ) that a trans-

formation of type I of period 7 permutes among themselves seven points so re-

lated that for every four of the points which are no three collinear the other three

are the diagonal points of their complete quadrangle.

Type lv The collineation

T, : Px2'=x3

has the characteristic equation (p-f-1) (p
2

+p+l)= whose roots are 1, u and

u* where a is a primitive root in the GF(24
) and hence « 5=j and « 15=7. The

invariant points of T,,
are Ajss (7,0,0), B

A
= (o^w^Q^ee (o,/,w

4

), and T x
is

therefore of type I
x
with A

± for center (or invariant real point) and x
1
=0 for

axis ,or invariant real line). T x is of period 15 and Tj
5 and T^ are homolo-

gies. Accordingly, the group G15 (eye. IJ consisting of the 15 powers of T1

contains a self-conjugate cyclic subgroup of order 3 containing two homologies

and the identity. Since the determinant of T 1
is i, T1

3
,T 1

6
,T 1

9
,T 1

12
,
T

t

15 and no

other powers have determinant unity and are of period 5 with the exception of

TV^bsI. G15 (cyc. I
x ) therefore contains a self-conjugate cyclic subgroup of

order 5 consisting of these transformations.

Ti
3

,
which is of period 5, permutes the lines through A

x
in cyclic order and

hence a point P
x
not on the axis has 4 other conjugates P2,P3 ,P4 ,Pii

such that no

two of the points P
1 ,Po,P3,P4,P3 are collinear with A,. Moreover, no three of

the points P
1 ,P2,P3 ,P4,P5 ,

can be collinear, for if they were the line containing

them would be invariant under Tx
8
. Hence, P

1 ,P2,P3 ,P4 ,P r>
form a point conic

having Ax for outside point. Evidently Tj
8 leaves invariant three such point

conies having A x for outside point and by duality three line conies having x
l
^=o

for outside line.

Every collineation T/ of type l
1

in PG(2,2
2
) is conjugate to T

x or some

one of its powers since there is in PG(2,2
2

) a transformation S transforming any

point P' and line /' into (7,0,0) and x
1
=o respectively and a transformation S u

leaving the point (7,0,0) fixed and changing any pair of conjugate imaginary

points on x
l
=o into the pair (o,7,m

4
). The collineation (SS 1 )T/(SS 1 )

_1 must

then be some power of Tx .

In discussing the one-dimensional transformations it was shown that in

PG(2,2
2
) there are six pairs of conjugate imaginary points on each line. Hence

there are in PG(2,2
2
) 21-16-6 =2016 conjugate groups G^fcyc.I,) each con-

taining a cyclic self-conjugate subgroup of order 5 consisting of the transformations

of period 5, and a cyclic self-conjugate subgroup of order 3 consisting of the hom-

ologies. There are 2016 of the cyclic subgroups of order 5 but only 21 -16=336 of

the subgroups of order 3 since the same subgroup of order 3 appears with every

G ]5 (cyc.I 1 ) which leaves invariant a given center and axis.
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Type I 3 . If T3 be a transformation of type I, it leaves invariant a real trian-

gle A,B,C T3 is fully determined by its invariant triangle and the transforma-

tion of a point P into a point P' provided the points A,B,C,P andP' are no three

collinear. Hence, (Theorem 4, Cor. 4) there are two choices for P' for a

given point P. Accordingly T3 is of period three and permutes the 9 points not

on the sides of its invariant triangle in three triangles. It should be noted that

any one of these triangles together with the points A,B,C form a set of six points

no three of which are collinear and therefore constitute in six different ways a

point conic and its outside point. Also that any one of these triangles and two of

the points A,B,C form a point conic left invariant by T3 and hence that T, leaves

invariant 9 different non-degenerate point conies. If A,B,C be taken as the tri-

angle of reference the two transformations of type I 3 which leave it invariant are

T, : px 2 =i"x2 and T3
2

: px2 =ix2

Since any triangle can be transformed into any other triangle by a collineation

within the PG(2,2
2
) it follows that every collineation of type I, is conjugate to

T3 or T3
2

. Since 21 -20 -16/3 1—1120 different triangles can be chosen in PG

(2,2
2
) there are 1120 conjugate cyclic groups G3 (eye. I 3 ).

Type II. A collineation T2 of type II leaves invariant two real points A,B,

and a real line / (distinct from AB) through one of the points, say A. Two
lines fixed through A make the transformation of lines through A of period three.

One line fixed through B makes the transformation of lines through B of period

two.

T2 is therefore of period 6, but only T2 and T2
5=T2

' are of type II. T2
2

and T2
4 are homologies with B for center ?nd / for axis and T2

3
is an elation

with A for center and AB for axis.

If we select A as the point ( 0,0,0 B as the point ( i,o,o) and the line / as the

line x
i
=o we find that any point P not on AB or / can be transformed into any

other point P' not on AB, I. PA or BB Taking P and P' as (/,/,/) and (/',/,o)

T2 is determined as

T2 : nx2'=x2

px/=x 2 -4-x :i

On the line x
x
=o T2 interchanges the points (o,/,o) and (o,i,i). It is easily

seen that T„ or T.r 1
is conjugate to anv other transformation T./ of type II

in PG(2,2
2
)."

Since the invariant figure can be chosen in 21 •10-8=1080 different ways

and for a given point P, on / there are three choices for P,' it follows that

^oo48o contains 5040 cyclic groups G6 (cyc.II) each containing a self-conjugate

cyclic subgroup of order two consisting of T,
3

(an elation) and the identity, and

a self-conjugate cyclic subgroup of order three consisting of T2
2 and IV (hom-

ologies) and the identity. It is to be noted, however, that each subgroup of

order two is common to 16 (since there are 4 choices for B on AB and 4 choices
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for / through A) different groups G„ (eye. II) and hence that there are but 315

such subgroups. Also that each subgroup of order three is common to 15 different

groups G6 (eye. II) (since there are 5 choices for A on / and 3 choices for the pairing

of lines through B in each case) and hence there are but 336 different such sub-

groups of order three.

Type III. A transformation T of type III leaves invariant a line / and a

point A on /. Since one line through A is fixed the transformation of lines through
A is parabolic. T 2

is therefore an elation and T* must be the identical trans-

formation. T is consequently of period 4 and permutes four points, no one on /

and no three of which are collinear, in cyclic order. Since the transformation

of four points no three of which are collinear into four such points fully de-

termines a projective transformation it follows that a transformation T of type

ill is fully determined by any four such points which T permutes in cyclic order.

The collineation of type III determined by permuting the four points (7,0,0),

( I >
I>o)>(i>0,i) f.(i,i,i), no three of which are collinear, in cyclic order as named is

f»*i'—*i
T: px2'=x 1 -\-x2

Px./=x2 -\-xz

T leaves invariant the point (0,0,1) and the line x 1=0. It is readily seen that in

PG(2,2
2
) every collineation of type III is conjugate to either T or T3

.

Four noncollinear points A,B,C,D can be chosen in 21 -20 -16 :9/4 !=2520 dif-

ferent ways. Each cyclic order determines a transformation of type III not a

power of any determined by any other cyclic order and each transformation of

type III permutes in cyclic order the points of four different quadrangles. It

follows therefore that there are 2520-3/4=1890 cyclic groups G4 (eye. Ill) in

^60480 eacn containing a self-conjugate cyclic subgroup of order two. It is to be

noted that a subgroup of order two is common to 6 different groups G4 (cyc. Ill)

and hence that there are but 315 such groups.

Type IF. Homologies. The homologies in PG(2,2
2

) have appeared as the

336 cyclic subgroups of the 2016 G15 (eye. IJ and the 5040 G6 (eye. II). It

was shown that the 336 cyclic G3 (eye. IV) were conjugate under the group
G6048o- A homology, as has been seen, is of period three and its path-curves are the

straight lines through the center. The homology

,
;x l

/=ix 1

T : fix2'=x2

may be taken as a canonical form.

Type V. Elations. The elations have appeared as 315 conjugate cyclic sub-

groups of order two in both the 5040 groups G6 (eye. II) and the 1890 groups
G4 (eye. III). Each elation is of period 2 and its path-curves are the straight

lines through the center. The elation

fJx/=x,
T: px2 =x2

px./=x } -{-x3
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which has for center the point {0,0,1) and for axis the line x
l
==o may be taken

as a canonical form.

§5. The Group of Determinant Unity —G20160 .

Theorem 5. In PG (2,2") every group G of order N which contains col-

lineations of determinant not unity contains exactly N/3 collineations of determi-

nant unity.

Proof. It is obvious that the collineations of determinant unity in G form a

self-conjugate subgroup Gn . Suppose n greater than N/3 . If T be any collinea-

tion in G but not in Gn the products of T and T J

by the n collineations in

Gn are 2n distinct collineations and G would contain 3n>N distinct collinea-

tions which is contrary to hypothesis. Suppose n to be less than N/3 . G must

then contain m> N/3 collineations of determinant d where d is either i or r.

If T be any collineation in G of determinant d 2 the products of the m
collineations of determinant d by T are m>N/3 distinct collineations of determi
riant unity in G, contrary to supposition. Since n is neither less nor greater than

N/3 it follows that n= N/3
The Group of Determinant Unity. By Theorem 5 the group G60480 has a self-con-

jugate subgroup of determinant unity of order 60480/3=20160. In §4 it was shown

that all collineations of types Ia,III, V and those of type I of period 7 and type

I of period 5 were of determinant unity. Hence the Group20160 of determinant

unity contains the following collineations:

The identical collineation 1

All collineations of type I 3 2240

Those collineations of type Ii which are of period 5,

(1-3 of the total number) 8064

Those collineations of type I which are of period 7,

(3-10 of the total number) 5760

All collineations of type III 3780

All collineations of type V 315

20160

The group will be designated as above by G20180 . It has been proved that in any

PG(k,p
n
) the group of all collineations of determinant unity is the maximal

simple subgroup of all collineations in the PG(k,p
n
).*

Theorem 6. Every collineation in G2inM can be obtained as a product*

of elations.

Proof. Let T be any collineation of type I 3 determined by the equation

* Cf. VEBLENand Bussey, 1. c, p. 253 and Dickson, 1. c, p. 87.
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T(A 1
A2A3A4)=A1

A2A3A5 where no three of the points A
1 ,A2,A3,A4,A5 are

collinear. Two elations E
1
and E2 are determined by the following equations:

Ei(AiA2A3A4 )
= AtA3

A2A4

E 2 (A2A3A4A5)=A A2A5A4

such that their product E 2E 1=T. That E
t and E 2 are elations follows from the

facts that elations are the only collineations in PG(2,2
2
) of period two and that

the points A 1,A 2,A3,A4,A3 are no three collinear. Since the five points are no

three collinear they form a conic and since E 2 interchanges four of the points by

pairs it leaves invariant point by point the diagonal line of the complete quadran-

gle of the four points. By Corollary 5 of Theorem 4 this line contains the fifth

point of the conic. E 2 , therefore, leaves Ai invariant and it is clear that E 2
E L

-= T. Hence every collineation of type I 3 can be obtained as the product of two

elations.

Let Tj be any collineation of type I, of period 5 determined by the equation

Tx (A 1
A.,A3A4 )

= A2A3A4A5 ,

where A
1 ,A2,A3,A 4,A 5 are five points no three of which are collinear. Two

elations E/ and E 2

'
are determined by the equations

E
1'(A 1

A,A4A,)=A5A4A2A1)

E/ (A2AaA4A5 )
=A

5
A4A3A2 ,

'

such that E2

,E/=T ]
. That E/ is an elation leaving A3 invariant and that E 2

is an elation leaving A 1
invariant follows by the reasoning given above to show

that E 2 was an elation leaving A
1

invariant. Hence every collineation T l of

type I
x of period five can be obtained as the product of two elations.

The transformation

T : px/=Ari-|-*,

is of type I of period 7. It is found that T = T
X
E where E is an elation,

E: ox./=x.,

and T x
is of type I

2 of period five

px/-=x 1 -\-x.,

T, : ,'.v./=x3

pX./=X.,-\-X :i

But since every collineation of type I
x
of period five can be obtained as a product

of elations and T or one of its powers is conjugate to every collineation of type

I of period seven within the PG(2,2
2
) it follows that every collineation of type

I of period seven can be obtained as a product of elations.

Let S be any collineation of type III determined by the equation

S (Ax
A2A3A4 )

=A2A3A4Aj ,

where no three of the points A 1 ,A2,A3,A4 are collinear. Any transformation so

determined must be of type III because in PG(2,2
2

) transformations of type III
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and no others are of period four. Then S=E 2E 1
where E

t
and E, are elations

determined by the equations

E
1 (A 1

A2A;,A4 )
= AjA4A3A2>

K 2 (A1
A2A 3Ai )

= A2A 1
A

4
A

3 .

E! and E2 are again necessarily elations because elations are of period two and

the points are no three collinear.

Since every collineation not an elation in G20 i 60 must be of type I
3 , Ij (of pe-

riod 5), I (of period 7), or III the theorem is established.

Theorem 7. In PG(2,2
2
) if a group Ga of determinant unity be trans-

itive on all points and lines of the plane and contain a single elation it contains

all elations.

Proof. In PG(2,2
2
) three and but three elations have the same center and

axis since there are but three ways in which the four points other than the center

on an invariant line can be paired. The theorem will follow, therefore, if it can

be shown that if Ga contain a single elation it must contain elations such that for

any given line / and point P on / there are three elations in Ga having P for

center and / for axis.

From the transitivity of Ga it follows that Ga must contain transforms of the

given elation such that every point in the plane is the center and every line the

axis of at least one elation. Also the order of Ga must be a multiple of 21 and

therefore Ga must contain a collineation of period 3. Since the only collineations

in PG(2,2') of determinant unity and period three are of type I 3 it follows that

Ga must contain collineations of type I 3 such that every point in the plane is a

vertex and every line of the plane is a side of the invariant triangle of at least

one collineation of type I 3 .

For the given line /, then, there is in Ga an elation E having / for axis and a

collineation T of type I 3 having / for an invariant line. Four cases may arise,

(a). P may be the center of F and an invariant point of T.

Since T leaves invariant a point which E transforms they cannot be commuta-

tive and hence TET-1 and T-ET 2 are the other two elations having P for cen-

ter and / for axis,

(b). P may be the center of E and not an invariant point of T.

Let A and B be the invariant points on / of T. A must be the center of some

elation Ej. If / be not the axis of E
t
we have E

1
TE

1

_1=T
1

a collineation of

tjpe I 3 having A and some point B' different from B on / for invariant points. By-

transforming T, through the power of T which transforms B'to P the case is reduced

to case (a). A similar argument applies to the point B. If neither A nor B be

the center of an elation whose axis is not /, by case (a) Ga must contain all

elations having A or B for center and / for axis. The three elations E,, E 2 , Es

having A for center and / for axis form with the identity a group since the

product of any two of them is an elation having / for axis and A for center.

Similarly the three elations E,',F./,E., having B for center and / for axis form
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a group. The nine products EjE/ are all distinct since if E
iE j

,=EkE 1

/
it fol-

lows that Ej'E/—EjEk which cannot be true. Moreover, every EiE/ is an
elation having / foi axis since it is of determinant unity, leaves fixed every point
of / and can not be the identity. Since the nine elations E s E/ are all distinct and
have / for axis they include the three elations having P for center and / for axis,

(c). P may not be the center of E and may be an invariant point of T.
P must then be the center of some elation E' having some other line than / for

axis. The transforms of E through E', T and T2
give elations such that every

point of / other than P is the center of an elation having / for axis. Since the lines

through P can be interchanged by pairs in three ways only, the product of some

two of these four elations is an elation with P for center and / for axis. This case

is thereby reduced to case (a).

(d). P may be neither the center of E nor an invariant point of T. If C, the

center of E, be not an invariant point of T by transforming E through T or T2

•'whichever transforms C to P) the case is reduced to case (b). If C, the center of

E, be one of the invariants points of T we may transform E through E
lt the elation

having P for center and some other line than / for axis, and obtain an elation E 2

having some other point on / for center. If E2 have for center the other invariant

point of T the product EE 2 is an elation E 3 whose center is not one of the invariant

points of T. The transforming of E 2 or E3 through T or T 2 then reduces this

case as above to case (b), and completes the proof of the theorem.

Definition of Figure. In PG(2,2
n
) a point figure is defined as any set of m

points where m is any positive integer less than 22n—|-2
n—

(-1. Similarly a line figure

consists of any m lines. The term figure is used to refer to either a point figure or

a line figure. A real figure in PG(2,2
n
) is a figure all of whose points and lines

belong to the PG(2,2").
It is obvious that any subgroup of G00480 which leaves invariant no real figure is

transitive on all points and lines of the plane.

Theorem 8. There is no subgroup of G20160 which does not leave invariant a

real figure on an imaginary triangle.

Proof. Any such subgroup Gk can contain no elation, for by Theorem 7 if Gk

contained a single elation it would contain all elations and hence, by Theorem 6, all

collineations in G20]60 . Also Gk can contain no collineation of type III since the

square of a type III is an elation.

Suppose Gk to contain a collineation T, of type l
x and let its

center be designated Pr As was seen in the proof of theorem 7, since

Gk is transitive and of determinant unity it contains some collineation

T3 of type I3 which leaves P
x

invariant. Let l
x and l2 be the two lines through

Px left invariant by T3 . Since T 1 is of period 5 on the lines through P
x
some power

of T1( say Tx
m transforms / x to l2 . Let /3 ,/4 ,/5 be the lines into which T\

m

tiansforms /2 ,/3 ,/4 respectively. Some power of T3 , say T3
n

, produces among the

lines through Y>
1 the transformation (lx ) (I.,) (IJJ^)- Hence the product

T,
2mT3

n
produces among the lines through P

x the transformation (lj3 ) (LI*) (l5 )
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The collineation T,
2mT3

n leaves invariant the point P, and a single line /. through
Pr Such a collineation must be of type III or an elation. Hence Gk can contain

no collineation of type Ir
Since the only other collineations of determinant unity are of type I 3 (of period 3)

and type I (of period 7) Gk can contain only collineations of these two types.

Since 20160—x2*'3a '5r7 and the order of Gk must be divisible by 21 the only possible

orders for Gk are 21 and 63. But as a consequence of Sylow's Theorem* any group
of order 21 or G3 must contain a self-conjugate cyclic subgroup of order 7 since the

order of the group can be written in the form 7m(l-f-7k) where 7m is the order

of the largest group within which the cyclic subgroup of order 7 is self-

conjugate and 1 -j-7k is the number of cyclic subgroups of order 7. For order 21

the only possibility is k=0 and m=3 and for order 63 k =0 and m=9. In

PG(2,2-) the only possible cyclic group of order 7 is a G7 which leaves invariant

an imaginary triangle F,. But if the G- be self-conjugate within the Gk every

collineation in Gk must leave invariant the imaginary triangle Fi. Hence there

is no subgroup Gk of G201C0 which does not leave invariant either a real figure or

an imaginary triangle.

Theorem P. There is no subgroup of G60480 except G20]60 which does not

leave invariant a real figure or an imaginary triangle.

Proof. If any subgroup, say Gn ,
exist it must contain a self-conjugate sub-

group H n of determinant unity which leaves invariant no real figure or imaginary

triangle contrary to theorem 8.

§6. The Group Leaving Invariant an Imaginary Triangle—G6S .

Theorem 10. The group of all collineations in PG(2,2
2
) which leave inva-

riant a given imaginary triangle F t is of order 63.

Proof. Let the group be designated Ga . In §4 it was shown that if a collin-

eation leave fixed one vertex of Fi it leaves fixed every vertex of F
( . Hence every

collineation leaving Fi invariant must either permute the vertices of F| in cyclic

order or leave each vertex fixed. It was also shown in § 4 that there are exactly

21 collineations—the 21 powers cf a type I
()
of period 21—which leave each vortex

of an imaginary triangle F
t

fixed. That there can not be more than 21 such col-

lineations follows from the fact that ? collineation is fully determined by the

leaving fixed of each vertex of an imaginary triangle and the transformation ot

one real point into another real point.

There can not be more than 21 collineations permuting the vertices AiBiCi of F| in

a given cyclic order (AiBiC,). For suppose S,, S„ S„, Sn to be n such

collineations where n>21. Then if T be a collineation permuting Ai,B 1(Ci in

the order (AiCiB t ) there are within G, n">21 collineations TSj,TS2 , TS3

,TSn ,
distinct from each other and each leaving every vertex A|,B,,C|

* See Burnside, Theory of Groups, p. 94.
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fixed, contrary to the hypothesis that Ga contains but 21 collineations leaving each

vertex of Fi fixed.

That there exists a group of order 63 leaving F t invariant is shown by consid-

eration of the transformations

/»*i'=**i+*3 Pxi'=x i
J
rx3

T : Px./=x i -\-ix2 and T3 : ^v/=x 3

Pxz'=x2-yr-xz p*3'=*2+*3
T is of type I of period 21 and T3 is of type I 3 of period 3. Tn leaves fixed

each vertex Ai=(j,*;
27
,v

s6
), Bi^(i,v

iS
,v

18
),Ci= (i,v

r"l
,v

9
) [where v is a prim-

itive root of the GF(26
)] of Fi, and T 3 permutes these vertices in the order

(A^Q). T and T3 , therefore, generate a group of order 63 leaving invariant

the imaginary triangle Fj. Since it was shown in §3 that F
(
can be transformed into

any other imaginary triangle Fi by a collineation within the PG(2,2'-), there is a

group of order 63 leaving invariant any such triangle.

Theorem 11. The only groups in PG(2,2
2

) which leave invariant an im-

aginary triangle Fi are the following:

A. Groups leaving each vertex of Fi fixed.

a. A cyclic group G 3 (cyc.I ) of collineations of type I of period J.

b. A cyclic group G 7 (cyc. /„) of collineations of type I of period 7.

c. A cyclic group G 21 (cyc. I ) of collineations of type I of period 21.

B. Groups permuting the vertices of F%.

a. A cyclic group G3 (cyc. 7 ) of collineations of type I of period J.

b. A cyclic group G3 (cyc. I ) of collineations of type / of period J.

c. An Abelian group G & leaving invariant also a real triangle, and contain-

ing besides the identity 6 collineations of type I of period J and 2 col-

lineations of type I3 .

d. A self-conjugate group G 21 of determinant unity containing besides the

identity 6 collineations of type I of period J and 14 collineations of type I3 .

e. A group G 6Z of all collineations in PG(2,2
2
) which leave Fi invariant

containing besides the identity 6 collineations of type I of period 7, JO of

type I of period J, 12 of type I of period 21, and, 14 of type I3 .

Proof. The existence of the group G„a
of all collineations in PG(2,2-) leaving

l'j invariant was shown in the proof of the preceding Theorem. The existence of

the cyclic subgroups is obvious and the existence of the G21 of determinant unity

follows from Theorem 5. The group G n is a Sylow subgroup and that it is Abe-

lian follows from the fact that its order is the square of a prime.* To establish

the Theorem it is only necessary to show further that every subgroup of the G63 of

all collineations leaving F s invariant is one of the kinds enumerated above. The

only possible orders for such subgroups are 3, 7, 9, and 21. All subgroups of order

3 or 7 must be among the cyclic groups enumerated above since 3 and 7 are primes.

A group of order 9 must be Abelian and by Theorem 5 must contain a G3 (cyc. I 3 )

Cf. Burnside, 1. c, p. 63.
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of determinant unity. But no such G9 can contain more than one G3 (cyc. I„) ;

for if T, and T2 be two collineations of type I, which do not belong to the same

G3 (cyc. I 3 ) the product of T
t by the power of T2 which permutes the vertices

of Fi in inverse order is a collineation of determinant unity leaving each vertex of

Fj fixed and therefore of type I of period 7. Hence every subgroup of G„3 of

order 9 contains a self-conjugate G8 (cyc. I 3 ) and leaves invariant a real triangle.

A subgroup of G03 of order 21 must be the direct product of a G3 and a G
7

. Since

the GT must be a G7 (eye. I ) and the G., must be either a G3 (cyc. I ) or a G,
(eye. I 3 ) every such subgroup must be either a G21 (cyc. I ) or a G2l of determinant

unity and therefore one of the kinds enumerated in the Theorem.

§ 7. Invariant Real Figures and Their Groups,

It has now been shown that every subgroup of the G00480 except the self-conju-

gate G2l)]00 of determinant unity leaves invariant a real figure or an imaginary

triangle, and every group which leaves invariant an imaginary triangle has been

determined. Accordingly we next take up the question of determining what real

figures can be the invariant figures of groups in PG(2,2
2
) and what group or

groups leave each invariant. In determining these groups it is sufficient to con-

sider point figures; for, since a collineation in the plane is self-dual, corresponding

to every group which leaves invariant an //-line figure there is a group of the same

order which leaves invariant the dual //-point figure. Abstractly considered the

two groups are identical. Furthermore, in PG(2,2
2
) it is sufficient to consider

point figures in which the number of points n is less than 11, for if n == 11 the

point figure consisting of 21—n (or some lesser number) can be taken as the inva-

riant figure of the group.

In this section will be determined all groups which leave invariant real point-

figures whose points are not all collinear and which leave no point fixed under

all transformations of the group. To obtain all such groups it is only necessary to

determine for each value of n from n = 10 to n == 3 all groups which are trans-

itive on all points of the //-point figure ; for, if such a group be not transitive on

all points of an //-point invariant figure it must appear as a group which is trans-

itive on an w-point figure where 3<s/w<//.

A group which leaves invariant an //-point figure also leaves invariant an as-

sociated line figure each line of which contains the same number of points; for,

every line containing k of the // points can be transformed by a collineation within

the group into some line through each of the other n-k points and hence each

of the n points lies on at least one liw containing k of the n points. It is, of

course, obvious that every transform of a line which contains k of the n points

must also contain k of the n points if the //point figure is invariant under the group.

It follows by the same reasoning that through each of the n points there must be

the same number of lines. Hence the figure made up of an //-point and its asso
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dated m line may be called a configuration* and represented by the symbol

I
n I

k m

where n is to indicate the total number of points, m the total number
of lines, k the number of paints on each line and / the number of lines through
each point of the configuration. In such a configuration the points and lines are

so related that nl=km, and \
-\- l{k-V)^>n. Also, since in PG(2,2

2
) not more

than 6 points can be chosen such that no three are collinear (Cor. 4, Theorem 4)

if n > 6, k <£ 3. Since not more than 6 lines can be chosen such that no three are

concurrent it follows that if m >6 either /<£3 or ra<£3£.

By making use of the above relations and the fact that whenever m<« or

21—m<n it follows by duality that the same group must appear as a group leaving
invariant a lesser number of points, we find that the possible configurations in

PG(2,2
2
) reduce to the following:

(a)

(d)

(g)

(J)

10

3
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F„„ 3 which pass through P. On l
xJJ:i

are 7 points of F,,,,., and hence there are

three points PlfP8,P, of F, 0M not on any of the lines l^l.J^. This necessitates

either that G lines l
x ,iJA , PP lt

PP
L„PP3 pass through P or that two or more of the

points Pl,Pa,P, are collinear with P. Since neither of these conclusions is allow-

able under our hypotheses, Fx0„ is not a possible configuration in PG(2,2*).

(b)
4

12

On each line of F , 3 must be two points which do not belong to F D , 3 . Let any
line of F,„ be chosen as the line x

l
=o and the two points on it which do not

belong to F9 , 3 as the points 12 (o,o,j)* and 17 (o,i,o). Then the points

(o,i,i), 10 (0,1,1), and 18 (o,i,i) on x,=o must be points of F , 3 . Through

passes one and but one line which does not belong to F
, 3 . Let the point of inter-

section of this line with the similar line through 10 be chosen as the point 4

(1,0,0). Neither of these lines can contain any other points of F 9 , 3 than and

-0, respectively, because the other three lines through either point contain six other

points of F
9 , 3 which added to the three points on x

x
=o gives the total nine points

of Fn , 3 . The point 4 is therefore not a point in F 9 , 3 . Now no line through 12

which does not pass through 4 can be a line of F 9 , 3 since such a line contains at

least three points (12 and its two intersections with the lines from 4 to and 10,

respectively,) not in F9 , 3 . A similar argument applies to the point 17. But every

line of F9 , 3 passes through some point of x
x
=o and but nine besides x

t
=o pass

through the points 0, 10, 18. Hence the lines x2=o and

x2=o are lines of F9„ and the nine points of F9 ,3 lie

three by three on the sides of the triangle of refer-

ence On the side x2=o are the points 6 (i,o,i),

11 (1,0,1), 15 (i,o,i), and on x3=o are 3

(1,1,0), 7 (i,i,o), 19 (1, i,o). A reference

to the table of alignment (p. 3) shows that

these nine points are collinear by threes

on nine other lines as shown in the

accompanying figure (Fig. 3).

Since x
l=o Avas chosen

as any line

Fijjure 3

* Numbers printed thus, 12, 17, etc., refer to the numbers assigned to points with certain

coordinates, as given in the table of alignment on p. 3
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in F0)3 it follows that through each point not belonging to F
9 ,3 pass two lines of

F
11)3 and three lines not belonging to F

s„ 3 ,
anu each une not belonging to F

,a

contains one and but one point of F9 , 3 .

Having found that F
9 , 3 is a possible configuration in PG(2,2-) we next pro-

ceed to determine what collineations can leave it invariant.

No line of F9 , 3 can be the axis of an elation leaving F9 , 3 invariant, for an

elation interchanges all lines not invariant by pairs. Hence not more than one

point of F
, 3 can be invariant under an elation. But since an elation interchanges

all points not invarianl by pairs at least one of the nine points of F9)3 must be

invariant under an elation which leaves F„, 3 invariant. If any point of F9 , 3 is to

be the center of such an elation the axis of the elation must be the one line through
the point which contains no other point of F 9 , 3 ,

that is, the axis must be the line

joining the point to the opposite vertex of the triangle of reference. An elation

having such a center and axis and interchanging the other two vertices of the

triangle of reference must leave F9 , 3 invariant since the nine point* of F 9 , 3 lie

three by three on the sides of the triangle of reference. It is obvious that there

exists one and but one such elation* for each point in F
9 , 3 . Moreover, no point

of the residual figure R 9 , 3 can be the center of an elation leaving F9 , 3 invariant

lor through such a point pass two lines of F9 , 3 upon each of which are three points

cf F
9 , 3 which could not be interchanged by pairs. There are, therefore, nine and

but nine elations in PG(2,2
2
) which leave F

(l , 3 invariant.

If T be a transformation of type I 3 which leaves F9 , 3 invariant no point P of

F,,, 3 can be a vertex of its invariant triangle; for at least one of the invariant lines

through P would have to be a line of F 9)J and on that line a point of F 9 , 3 would

be transformed into a point in R
9 , 3 . If any point in R

, 3 can be a vertex of the

invariant triangle of T the two lines through it belonging to F9 , 3 must be the two

invariant lines through the point, since otherwise at least one of them would be

transformed into a line not in R
9 , 3 . The other two vertices of the triangle must

be the two other points on these lines which do no*- belong to F9 , 3 . Since the line

joining these two points is a line of F9 , 3 the points of F9 , 3 are three by three on

the sides of the triangle and hence T and T 2 leave F 9 , 3 invariant. Since but four

such invariant triangles can be selected from the twelve points of R
9 , 3 there are

eight and but eight collineations of type L which leave F
9 , 3 invariant.

No transformation of type l
1 of period five or fifteen can leave F

9 , 3 invariant

on account of its period. A collineation of type I 3 of period three is an homology.
If an homology H leave F

9 , 3 invariant it can not have a point of F9 , 3 for center

since on one of the invariant lines a point of F9 , 3 would be transformed into a

point of R 9 , 3 . If any point P of R9 , 3 can be the center of H, through P pass

two and but two lines of F
9 ,3 and the axis of H must be the line / joining the two

points of R
9 , 3 which lie on these two lines. Since / contains the other three points

For example, if be chosen as the pomt, the elation must be px 2
'=r#3

px/—ixa
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of F0>3 a homology having P for center and / for axis must leave F9 ,3 invariant.

For each of the twelve points of R
, 3 there are, then, two and but two homologies

leaving F
, 3 invariant. Accordingly, there are twenty-four homologies leaving

FH , 3 invariant.

If the homology H having P for center and / for axis be multiplied by an

elation E leaving F9 , 3 invariant and having some point Q on / for center a col-

lineation T2 is obtained which transforms F
,3 into itself and leaves invariant the

points P and Q and the line /. Since T2 is of determinant not unity and is of

period 2 on / and period 3 on the line PQ it must be a collineation of type II.

Since there are three and but three choices for the point Q on / there are six and

but six collineations of type II having P for center which leave F9 , 3 invariant.

But every collineation of type II is of period six and has for its square a homology
and for its cube an elation. Hence every collineation of type II which leaves F9„
invariant must be the product of a homology and an elation each leaving F9 , 3

invariant and therefore related as were PI and E in obtaining T, above. Since

the only points which can be the centers of homologies leaving F 9 , 3 invariant are

the twelve points of R9 , 3 and each homology and its square can be combined with

three different elations there are seventy-two and but seventy-two collineations of

type II leaving F9 , 3 invariant.

If F
9 , 3 can be left invariant by a collineation T

3 of type III, T
3 must have the

same center and axis as some elation since T3
2

is an elation. Taking for center

and 4 for axis we find that there are six and but six collineations T3,T3 ', T3",

and their cubes, of type III which leave F9 , 3 invariant and have this center and

axis. This corresponds to the fact that there are only three ways in which the four

lines of F , 3 through can be interchanged by pairs. The transformations T
3 ,

T/, and T3
"

are

px1
'=x

1 -\-Px2-\-ix3 px/=x 1 -\-ix2 -{-x :i p*i'='*i-f- ,J(,
:.'-|-

A:3

T3 : p*/=iAr 1 +/Ar2 -|-/jf3 17/ : px2
,=i2x

1 -{-ix2 -\-ix3 T3": px./=ix l -\-x.,+ix3

px/=i
2x

1 -\-x2-{-ix3 px/=x 1 -\-x2 -\-ix3 px3'=rx 1 -\-x2 -\-x3

That these collineations leave F
9 , 3 invariant is more readily seen when they are

written in the form (points of F„,3 in italics) :

T,—(o) (ill IS 7) {6 iS 19 io) (1 16) (4 14) (5 12 9 17) (2 13 8 20)

T3'={o) (J 19 15 6) (7 io ii 18) (1 14) (4 16) (5 13 9 20) (2 17 8 12)

T,"— (o) (3 18 15 io) (6 7 19 u) (1 4) (14 16) (5 2 9 8) (12 20 17 13)

Since these collineations are not commutative with the collineations of type I 3

and the elations which change the point into points on the other sides of the

triangle of reference it is clear that the total group of collineations leaving F ,s

invariant must contain six collineations of type I 3 for each point of F
yI , or alto-

gether 54 such collineations. In fact, it is obvious that if any other center and axis

than and 4 respectively had been selected six and but six collineations of type

III leaving F 9 , 3 invariant and having that center and axis could have been deter-

mined, provided that the center and axis selected were the center and axis of some

elation leaving F9 , 3 invariant.
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PG(2,2
2
) (except the G

21(1 itself) which leaves F,„ invariant must be a sub-

group of the G216.*

(e) Q 3 1'

. =F , S
'. Consider a point P of F„s

' and the three lines /,./..,/., of

-J—--___'

F0)3
' which pass through P. On /,,/.,,/.,

are 7 points of F„, .' and there are, there-

fore, two points P' and P" of F ,z
' not on /,,/.,, or

/.,.
There are two possibilities

only
—P' and P" are or are not collinear with P. If P' and P" are collinear with

P the configuration is F9 , a except that ? lines are omitted. If P' and P" are

not. collinear with P there must be two lines through P (namely PP' and PP")
which contain but two points of F n ,.,'

each. Since P can be transformed into any

other point of F<„./ this would necessitate the existence of a configuration of 9

points arranged two points to the line which contradicts the condition that when
the number of points exceeds G there must be at least 3 to the line. Hence there

is but one possible arrangement and that is as the 9 points and 9 of the lines of

F8 , 3 . Since F9 ,3 includes all lines joining its points it follows that every trans-

formation which permutes the 9 points and 9 of the lines of F 9 , 3 also permutes

«imong themselves the other 3 lines of F9,a . F,„ 3

'

is, therefore, the subgroup GM of

order 54 of F9 ,3 which leaves invariant a simple 3-line composed of 3 lines of F
,,

jo chosen that no two of them meet in a point of F9 , 3 .

j
3 8 I

=Ir
s>3' Let any line of F8 , 3 be chosen as the line x3=o. Since

but 6 lines of F8 , 3 meet x3=0 in points of F8 ,3 there is one and

jut one line of F8 , 3 which meets .v3=o in a point of R 8 , 3 . Let this be chosen as

the line x.,=o and let x
{
^=o be the line joining the two points on x.

i
=o and x2=o

(other than their point of intersection) which belong to R K , 3 . The points 3, 7,

19 of xz=o and 6, 11, 15 of x2=o are then points of F8 , 3 . Through each of the

points 3, 7, 19 pass 3 lines of F8 , 3 which contain 7 points of F8 , :!
. Since the one

other point determines but one line with a given point it follows that through each

of the points 3, 1, 19 passes one and but one line which contains no other point of

F8 , 3 . These 3 lines must meet x.2=o in a point of R 8 , 3 and hence all pass through

the point 12 the intersection of x.
2=o and *

1
=o. Any line through 4

( i,o,o) other

chan x2=o and x3=o intersects these three lines in points of R8 , 3 and hence can

contain no points of F8 , 3 except as points of intersection with at,=<7. Therefore the

other two points of Fs , 3 lie on xt—0. But we know that the 9 points other than

vertices on the sides of any triangle in PG(2,2-) are collinear by threes on 12 lines

of which 4 pass through each point. Accordingly, if any one of the points 0, 10,

18 on x
x=o be omitted there remain 8 points collinear by threes on 8 lines. Hence

* The group G216 was studied at length by Maschke, Math. Annulen, Vol. 33 (1890), pp.

324-330, and the geometric properties of the group and its subgroups by Newson, Kansas Uni-

versity Quarterly, Vol. II, No. 6 (Apr. 1901), pp. 13-22.
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F8 ,3 must be F9 , 3 with one point and the 4 lines through that point omitted and its

group is the subgroup of F 9 , 3 G24 of order 24 which leaves invariant a single point.

< e ) pf
—

Q-r
•=F7 , 3 . Let / be any line of F

7 , 3 and P, Q, R the three points on

/ belonging to F
7 , 3 . Then there are but four other points A,B,C,D f F7 , s

not on / and these four points must lie two by two on two lines through

each of the points of the complete quadrilateral of the other four points A,B.C,D.
Let A,B,C, be taken (See Fig. 1, p. 4) as the vertices (7,0,0), (0,0,1) (0,1,0)

respectively of the triangle of reference and D as the point (/,/,/). This deter-

mines the coordinates of P,Q,R as ( 1,0,1), (0,1, 1), (1,1,0) respectively. Since

these coordinates are in the GF(2) F
7 , 3 coincides with PG(2,2) and we can de-

termine the number of collineations of each type by substituting n=l in the

formulae given on p. 10, noting that type \
x of PG(2,2)is type I 3 of PG(2,2

2
).

This gives 56 collineations of type I 3 (type \
x in PG(2,2) ), 48 of type I of

period 7, 42 of type III, and 21 elations, which, together with the identical trans-

formation make a group G1G8 of order 168. Every collineation in the group is

of determinant unity and since it is of degree 7 and order 168 it is recognized as

the simple group G]68 first derived by Klein by the consideration of the trans-

formation of the seventh order of elliptic functions.*

Every group which leaves F7 , 3 invariant must be a subgroup of G 1G8 and every

subgroup of the G]G8 leaves F7 , 3 invariant!

( f ) r«-^ (g)
6 5

I =F •

2 15 c ' 2 '

6
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termine 15 distinct lines. Hence every collineation which leaves invariant the

six-point also leaves invariant the associated fifteen-line. From this is follows

that the groups leaving F,,,/, F„, 2", F
(„ 2

'"

, invariant must either be the group

leaving F , 2 invariant or subgroups of it.

An elation E leaving Fc , 2 invariant can not have more than two points of F „
on its axis, and since an elation interchanges by pairs all points not on its axis K

must interchange by pairs at least four points of F,„ 2 . Since any four points no

three of which are collinear can be transformed into any four such points by a

collineation there exist in PG(2,2-) collineations interchanging by pairs any four

points of F
tl , 2 . All such collineations are elations because no other transforma-

tions in PG(2,2
2
) are of period two. Moreover, such an elation E leaves inva-

riant each diagonal point of the complete quadrangle of the four points chosen

and therefore the other two points on the diagonal line which are not diagonal

points. These last two points must be the other two points of F„, 2 (Cf. proof of

Cor. 5, Theorem 4). Since four points no three of which are collinear can be

interchanged by pairs in three different ways it follows that there are three ela-

tions leaving F
, 2 invariant for each distinct quadrangle that can be chosen from

F
, 2 . There are then 3(0'

,

;*>'4*3/4!)=4f> elations which leave F„2 invariant.

Since any four points no three of which arc collinear can be transformed into

any four such points by a collineation there exist in PG(2,2-') collineations per-

muting any four points of F„, 2 in any given cyclic order. Such a transformation

must be of period four and therefore of type III. A collineation T of type III

which permutes in cyclic order any four points of F,., 2 must leave invariant one

of the diagonal points of the complete quadrangle of the four points and inter-

change the other two diagonal points. Since any two points of F„, 2 lie on the

diagonal line of the complete quadrangle of the other four points but are not

diagonal points it follows that if T permutes in cyclic order four points of F„,,

it interchanges the other two points of Fa>2 . Since any four points, no three of which

are collinear, can be permuted in six different cyclic orders it follows that there

are 6 (6*5 4 -3/4!) =90 collineations of type III which leave F„. 2 invariant.

Since a collineation of type l
x
of period 5 leaves invariant one real point if it

leave F
fl , 2 invariant its center must be a point of F

(! , 2 . The other points of

Fe,a form a conic of which the sixth point (the center) is the outside point. If

4 (i,o,o) be taken as the center and the other five points permuted in the order

(1 13 20 12 17) the transformation is found to be

T: px./=rx.,-\-x :i

of type Ij and period 5. It was shown in § 3 that there are six different pairs of

imaginary points on the axis of T determining six transformations of type I, with

the same center and axis and no one a power of another. These correspond to the

six different cyclic orders in which five points of the conic can be permuted and

there are, therefore, G independent transformations of period 5 (24 altogether)
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leaving FG , 2 invariant and having the point 4 for center. Hence there are alto-

gether G -24=144 collineations of type I
± leaving FG , 2 invariant.

Since a transformation of type I
3 permutes in cyclic order any set of three points

so related to the vertices of its invariant triangle that the six points are no three

collinear, any collineation of type I 3 which has three points of F6 , 2 for vertices

of its invariant triangle must leave F
, 2 invariant. Twenty distinct triangles can

be chosen from the six points of F
, 2 and hence 40 collineations of type I 3 leave

F
, 2 invariant in this way. We know, however, that each such collineation per-

mutes the vertices of two triangles not in F
r> , 2 either of which may be taken as

the invariant triangle of a transformation of type I 3 which permutes the vertices of

the two triangles in Fp , 2 . For each pair of triangles that can be selected in Fc , 2

there are then four transformations of type I 3 having invariant triangle not in

FG , 2 which leave F
, 2 invariant. Since ten pairs of triangles can be chosen in F G , 2

Lhere are 40 collineations of type I 3 which leave Fc , 2 invariant in this way.

It has been shown that the group which leaves FG , 2 invariant must contain

as many as 360 collineations. Since the group can be represented as a substitu-

tion group on 6 symbols it must therefore be either the alternating or symmetric

group of degree six. But since there is no collineation which holds four of the

points of F6 , 2 each fixed and interchanges the other two the group can not be the

symmetric group. The group which leaves F
, 2 invariant is therefore the alternat-

ing group on six symbols, shown by Wiman* to be identical abstractly with the

the finite ternary group G300 first set up bv H. Valentiner.f

The group G3fi0 is here characterized not only as a group on six points but

since any one of the points can be taken as the outside point of the conic deter-

mined by the other five points as a group leaving invariant a system of six conies.

It is clear that every subgroup of G3(i0 leaves F,., 2 invariant and every group in

PG(2,2
2
) which leaves F

r> , 2 invariant must be a subgroup of G3fi0 .

0)
5 4

2 10
=F„ 2 ;

(k)
5 2

2 5
Fn ,/.

Since the five points of F-, 2 are no three collinear they form a conic and the

group which leaves Fa ,2 invariant is therefore simply isomorphic with the group

cf all transformations of points on a line. The group accordingly contains 15

elations, 20 type I 3 's and 24 type I/s of period 5 (Cf. § 3). Since every trans-

formation which leaves a conic invariant must leave its outside point invariant

this group is recognized as the subgroup of the G3no which leave? a single point

fixed. It is here represented joth as the group which leaves invariant a conic and

the alternating group on five symbols (the five points of F-, 2 ). The group which

leaves F5 , 2

'
invariant must be the subgroup of the G„ which leaves the 10 lines of

* Math. Annalen, Vol. 47, (1896), p. 531.

f Kjoeb. Skr. (5) 5 (1889), p. 64. See Ency. d. Math., ffiss., Vol. I, p. 529. In deter-

mining the finite ternary groups, Valentiner, who was apparently unaware of the previous work of

Klein and Jordan, missed the G36O.
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FB>a invariant in two systems of five lines each. It is therefore a group G 10 of

order 10.

(I)

pr"M_F .

<m
>j i ,|_F ,

|_2 0J
^4 ' l,,

LL_LL
'

The configuration F4 , 2 is a complete quadrangle and since four points can be

permuted among themselves in all ways by transformations in the plane the group

must be the symmetric group G21 of all transformations on the four points. The

configuration F4 ,3
'

is a simple quadrangle and hence its group is the subgroup Gc

of the G,,.

<»> rt-r
I 2 3

=F3 , 2 . The configuration F„a is the triangle and hence every

transformation leaving it invariant must do so in some one of the following three

ways: (1) Leave the three vertices each fixed; (2) leave one vertex fixed and

interchange the other two; (3) permute the three vertices in cyclic order.

These may be written down at once as follows:

Under (1) there are 2 type I 3 's and G homologies; under (2) there are 18

type II's and 9 elalions; under (3) there are (> type I.,'s and 12 type I,,'s of period

3. Including the identity, then, there are 54 collineations in the group.

§ 8. Subgroups of the Group G 2880 Which Leaves a Line Invariant.

All groups which leave invariant a set of collinear points must also leave in-

variant the line / which contains the points. Since any four lines no three of which

are concurrent can be transformed into any four such lines by a projective trans-

formation in PG(2,p
n
) the order of the group leaving a line fixed is

N= (/,=«+/," )(^»)^"—2/>"4-l)=/r"(A
J"— 1 )(/>"— 1)

For PG(2,2
2
) this gives N—2880 and accordingly the group will be desig-

nated as G2880 . Since any line in the plane can be transformed into any other line

in the plane by a collineation within the G0048o it follows that G, ; „ 1H „ contains 21

conjugate groups G2880 .

Subgroups of G..880 which lean- a point not on I invariant. In determining the

subgroups of G2880 we shall first determine all subgroups which leave invariant at

least one point not on / and then all subgroups which leave invariant no point not on

«\ Taking / as the line *3=<> (or the line at infinity) every collineation in the

G2(n is of the form

x'=a
l x-\-a.,y-\-a

l! y'—btx+bj+b
where x and y are nonhomogeneous point coordinates. Selecting the point not

on / as tie origin every collineation in the G., s „„ which leaves it invariant is of

the form
x'=a

l x-{-a.,y
1

<

:

y'=b xx+b,y
But it has been seen in § 3 that in homogeneous coordinates the group of all trans-
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formations of the form T is the group Geo of all transformations of points on

.1 line. Since Gco is the alternating group on five symbols it contains the follow-

ing subgroups:*

I. Subgroup leaving all points of the line fixed.

1 self-conjugate G x
—the identity. T

l
: #'=«!#, y'-.=a1y.

II. Subgroups leaving invariant two points of the line.

a. Those leaving each point of the pair fixed.

10 groups G3 each conjugate to the G3 of transformations of the form
T2 :x

,=a
1 x, y

,=b2yi ay b., in the GF(2-).
b. Those leaving the pair invariant.

10 groups G6 each conjugate to the G6 of transformations of the form T
subject to the restriction that either a

1
=b 2=o or a.,=b 1

=o.
10 groups G2 each conjugate to the subgroup of G6 for which the coeffi-

cients are in the GF(2).

III. Subgroups leaving one point of the line invariant.

15 groups G2 each conjugate to the G2 of transformations of the form
T3 : x'=a

1x-\-a2y J y'= ax y, where tf^^are in the GF(22
).

5 groups G4 each conjugate to the G4 of transformations of the form T3

where alt a2 are in the GF(2 2
).

5 groups G12 each conjugate to the G12 of all transformations of the form
T4 : x'=a 1x-\- a2y, y'=bs y, where a 1 ,a2 b2

are in the GF(2 2
).

IV. Subgroups leaving invariant a pair of imaginary points on the line.

a. Those leaving each point of the pair fixed.

6 groups G r>
each conjugate to the G- of all transformations of the form

T subject to the condition that

a
1 --]-ia2

2
-{-i

2b
1

2
-{-b2

2
-\-a 1

a2 -\-i'-a 1
b

1 -\-ra2b 1 -\-a2b2-\-rb 1
b 2=o

b. Those leaving the pair invariant.
6 groups G10 each conjugate to the G10 of all transformations of the formT subject to the condition that

If T be taken as a transformation in nonhomogeneous coordinates we have a

group G60 simply isomorphic with G60
5 or a group G180 triply isomorphic with

G00
5

according as the determinant of the group of transformations of the form T
3

is unity or unrestricted within the GF(22
). Corresponding to the above groups on

the line there are then the following groups in the plane which leave invariant the

line / and point (o,o).

I. Subgroups leaving all points of / fixed.

1. Of determinant unity, 1 self-conjugate Gv
2. Of determinant not restricted, 1 self-conjugate G3 .

II. Subgroups leaving invariant a pair of points on /.

1. Those leaving each point of the pair fixed.

a. Of determinant unity, 10 conjugate G3 each leaving a triangle invariant.
b. Of determinant not restricted, 10 conjugate G 9 each leaving a triangle in-
variant.

All groups of degree less than 6 were obtained by Serret.
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2. Those leaving the pair of points invariant.

a. Of determinant unity,
10 conjugate G„ each leaving a triangle invariant.

b. Of determinant unrestricted,

10 conjugate G18 each leaving a triangle invariant.

III.. Subgroups leaving one point of / fixed.

1. Of determinant unity,

15 conjugate G2 each leaving invariant a point of lines.

5 conjugate G« each leaving invariant a point of lines.

5 conjugate G J2 each leaving invariant the line /, the Ar-axis and the origin

IV. Subgroups leaving invariant a pair of imaginary points on /.

1. Subgroups leaving each point of the pair fixed.

6 conjugate G„ of determinant unity.
6 conjugate G ]3 of determinant not restricted.

2. Subgroups leaving the pair invariant.

6 conjugate G 10 of determinant unity.

6 conjugate G30 of determinant not restricted.

Subgroups of G JSSII which leave no point not on I invariant. In the discussion

which follows the term translation will be used to indicate an elation having the

line / for axis and the term elation will be used only for an elation whose axis is

not /. In determining the subgroups of G.,880 which leave invariant no point not

on / we shall first determine all such subgroups containing no translations and

then all such subgroups containing translations.

Let Gn be a subgroup of G,880 which leaves no point not on / invariant and

contains no translation. If Gn contain an homology H having / for axis and A
for center, G„ must contain at least one transform H' of H having some other

point than A for center. One of the products H'H or H'H- is of determinant

unity and leaves all points on / fixed. It is therefore a translation. Hence Gn can

contain no collineation other than the identity leaving all points of / fixed and,

consequently, every such group must be simply isomorphic with the G00 .

We have seen (ante p. 30) that there is a group G,!0 leaving invariant a point

conic and its outside point. By duality there is a G« leaving invariant a line

conic and its outside line. Since the line / is the outside line of 48 different line

conies there are 48 such groups G60 which leave / invariant.

Every transformation of the form

*'=* + *

is a translation and the group of all transformations of the form E where a and

b are marks of the GF(2-) is a G 10 leaving every point on / fixed. Unless

a=b=o E is of period 2 and hence G ]6 contains 15 cyclic subgroups of order two.

If a=o and b be allowed to take on all values in the GF(2S
) or if b=o and a

be in the GF(22
) a group of order 4 is obtained, consisting of all translations

leaving fixed all lines through a given point P on /. Such a group will be desig-

nated as a G4 (P). If a be allowed to take the value o and but one other value

and b be restricted in the same way a group of order 4 is obtained containing be-

sides the identity 3 translations no two of which have the same center. Since such

a group leaves invariant a complete quadrangle of which the centers of the three

elations are the diagonal points, it will he designated as a G,(Q). If a be in the
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GF(2 2
) and b in the GF(2) a group G8 is obtained leaving invariant a point P

on / and interchanging the four lines other than / through P by pairs in a given

manner.

The G16 is an Abelian (or commutative) group since if Ei and Ej be any two

clations in G18 E
j
E

i
=E

1
E

j
. Consequently E

j
E

1
E

j

-1=E i
E

j
E

j

- 1=E 1 ,
and every

subgroup of G16 is self-conjugate within the G 1C . Also every two translations and

their product form (with the identity) a group G4 ,
for if EiEj=Ek ,

E 1=EkE j=EjEk and E
j
=EkE 1

=E
iEk . Hence G10 contains 15-14/0=35 sub-

groups G4.*

We shall next determine the subgroups of G2880 which are such that every col-

lineation in the group either leaves invariant a point not on / or is the product of

such a collineation and a translation in the group.

*
It may be of interest to note that the Gi6 can be represented as a three-space PG<3,2) by

letting the G2, G4, G$, correspond to the points, lines and planes, respectively, of the three-space.

The three-space S3 has
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The translations in any subgroup of G2880 form a self-conjugate subgroup Gk .

If any group G„ has a system of transitivity S which is also a system of transitivity

of its self-conjugate subgroup Gk of translations then every collineation in G„ is

either a collineation leaving a point O of S invariant or the product of such a col-

lineation and a translation ; for, let O be taken as the origin and let T be any

collineation in G„. If T displaces O it changes O to some point A in S. But since

S is a system of transitivity for Gk there is in Gn a translation T
t changing A to O.

Hence T
1
T=T2 a collineation in Gn leaving () invariant. From T

1T=T,
we have T=T 1T2 . Every such group Gn can be obtained then by extending

the groups leaving a point fixed by means of translations. In determining the

groups below, S will be used to indicate the system of transitivity common to the

group obtained and the extending group of translations. E,, E 2 and E will be

used to indicate the forms of translations as follows:

l
~

y'=y
^

/=y+* y'=y-H

The product of T = ^T'^V and E is of ^ form
y =blX+b 2y

>Y T? =r-x'=<?1x-\-any-\-a 1
a -\-a2b

It should, therefore, be observed that in extending a group of collineations of

the form T by E lf E 2 or E the range of values which can be assumed by the

additive constants in the product is dependent upon the coefficients of T as well

as those of E
x ,
E2 or E. In the work below S will be used to indicate a system of

transitivity of the extended group Gn which is also a system of transitivity of the

extending group Gk of translations. The groups obtained by such extensions are

as follows:

I. Subgroups leaving each point of I fixed.

1. Extensions of G! by E
1 ,E 2,E give groups of translations only.

2. Extensions of the G3 of the form Tx : x'= a
]x,y'=a 1 y, a

x
in GF(2-;.

a. By Ej gives a G 12 leaving invariant the x-axis. The points on the

x-axis form the system S.

b. By E 2 gives a similar G 12 leaving invariant the y-axis.

c. By E gives a G48 leaving invariant no point not on / and no line but /.

The system S includes all points not on /.

II. Subgroups leaving a pair of points on I invariant.

1. Subgroups leaving each point of the pair fixed. (10 of each).
A. Those of determinant unity. Extensions of G, of the form T, :

x'=a
xx, y'= b

2y, a
x
and b2 in the GF(2-).

a. By E x gives a G12 leaving the x-axis invariant.

The system S includes all points on the x-axis..

b. By E2 gives a similar Gl3 leaving the y-axis invariant.

c. By E gives a G4S leaving invariant no point not on / and no line but /.

The system S includes all points not on /.
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B. Those of determinant not restricted. Extensions of the G9 of the form

T2 . (10 of each).

a. By E x gives a G36 leaving the Ar-axis invariant.

The system S includes all points on the Ar-axis.

b. By E 2 gives a similar G36 leaving the y-axis invariant.

c. By E gives a G144 leaving invariant no point on / and no line but /.

The system S includes all points not on /.

2. Subgroups leaving the two points invariant as a pair.

A. Those of determinant unity. (10 of each).

Extensions of the G 2 of T with the form « 1
==Z'

2=o or a.^b x=o,

a 1 ,a2,b 1,b 2 being in the GF(2).
a. By Ej extends by E also giving

For a in GF(2) a G8 leaving invariant a PG(2,2).
The system S includes four points not on / no three of which are collinear.

For a in the GF(2
2
) a G32 leaving invariant no point not on / and no

line but /. The system S includes all points not on /.

b. By E, gives same as by E x or E.

Extension of the G of the form T with a
1
=b2-=o, or a2=b 1

^o and

a1,b 1)a2J
b 2 in the GFi2 2

).

By E 1 or E2 extends by E giving a Goe leaving invariant no point not

on / and no line but /. The system S includes all points not on /.

B. Those of determinant not restricted. (10 of each)

Extension of the G48 by E
x or E 2 extends by E with a and b unrestricted

giving a GJS8 leaving invariant no point not on / and no line but /.

The system S includes all points not on /.

III. Subgroups leaving one point on I fixed.

1. Those of determinant unity.

A. Extensions of G2 of form T4 :x'= a
vx-\-a2yj y'=a,y, a^* in GF(2).

a. By E
x
with a in the GF(2) gives a G4 leaving invariant the Ar-axis.

(15 such groups). The system S is the points on the Ar-axis having coor-

dinates in the GF(2).
b. By E x with a in the GF(22

) gives a G8 leaving the Ar-axis invariant.

The system S includes all points on the Ar-axis.

c. By E 2 with b in the GF(2) extends by E with a and b in the GF(2)
giving a G8 leaving invariant a PG(2,2) which is also the system S.

d. By E 2 with b in the GF(2 2
) gives a G32 leaving invariant no point

not on / and no line but /. The system S includes all points not on /.

B. Extensions of G4 of form T4 with a lt a2 in GF(2-). (5 of each).
a. By E

x gives a G1G leaving invariant the Ar-axis.

The system S includes all points on the Ar-axis.

b. By E 2 extends by E giving G04 leaving invariant no point not on /

and no line but /. The system S includes all points not on /.

C. Extension of G12 of form T5 : x'=ax
x -\- a2y, y'=b 2y. (5 of each).

a. By E
x gives a G48 leaving invariant the *-axis.

The system S includes all points on the Ar-axis.

b. By E 2 extends by E giving a G64 leaving invariant no point not on /

and no line but /.

The system S includes all points on the Ar-axis.
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2. Those of determinant not restricted. (5 of each).

A. Extensions of G, 2 of form T 4 .

a. By E, gives a G 4S leaving a point of lines invariant.

The system S includes all points on the *-axis.

b. By E 2 extends by E giving a G,M leaving invariant no point not on

/ and no line but /. The system S includes all points not on /.

B. Extensions of Gsa of form T6 .

a. By E, gives a G l44 leaving the #-axis invariant.

The system S includes all points on the *-axis.

b. By E., extends by E giving a GnTfl leaving invariant no point not on

/ and no line but /. The system S includes all points not on /.

IV. Subgroups leaving invariant a pair of imaginary points on I. (6 of each).

In each case the system S includes all points not on / and no point on / and no

line other than / is invariant.

1. Subgroups leaving each point of the pru'r fixed.

A. Of determinant unity.

Extension of Gs of form T„ (subject to quadratic condition) by E,
or E, extends by E giving a G so .

B. Of determinant not restricted.

Extension of Gla of form T (subject to quadratic condition) by E
x

or E 2 extends by E giving a G,40 .

2. Subgroups leaving the points invariant as a pair.

A. Of determinant unity.

Extension of G 10 of form T (subject to cubic condition) by E, or E,

extends by E giving a G1C0 .

B. Of determinant not restricted.

Extension of G30 of Form T (subject to cubic condition) by E, or E,

extends by E giving a G480 .

The extension of the total group G00 of the form T and determinant unity

by E
x or E, extends by E giving a group G900 of all transformations of determi-

nant unity in the G2880 . The extension of the group G, 80 of form T by E, or

E 2 extends by E giving the G2880 itself.

There remain to be determined the subgroups of G3S80 which leave no point

not on / invariant, contain translations, and are such that the self-conjugate sub-

group of translations has no system of transitivity which is also a system of tran-

sitivity for all other transformations in the group. Since the group G,„ of trans-

lations is transitive on all points not on / no such subgroup can contain the G, (i ,

Let Gn be such a subgroup of G 2S80 containing a G2 as the largest self-conju-

gate subgroup of translations. Selecting S: x'=x-{-i, y'=y as the trans-

lation in the G^, and T: x'=a
x x-\- b ] y-\-c i , y'=(i ix-\-b.iy-\-c, as the gen-

eral transformation in the G2sS „ (cf. p. 31) we have TST' 1
: x'=x-\-a l

, >•'=>•+<*•_.•

Since TST"'=S we have a
1==i, a.>=0 and every transformation in the G„ is of

the form T,: x'=x-\-ay-\-b, y'=cy-\-d. If r=i T, is of period 2 if cd=o and

of period 4 if ad=i. If c=i or r and b=acd, T, is of period 3., If r=i or r
and b is not equal to aid, T is of period (>. Hence every transformation

in G„ is of type II, III, IV or V. Also, all transformations of types III and V
have for center the point 4=(//m/) which is the center of S. all homologies

have for axis some line other than / through 4 and for center some point ottier

than 4 on /, and all transformations of type II have 4 as the point of intersection
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of the two invariant lines. Since no homology has / for axis, there are but two

transformations (S and the identity) in Gn which leave / point-wise invariant.

Gn is, therefore, at most (2, 1) isomorphic with some group in one dimension

leaving a point on the line invariant and its possible orders are (cf. p. 32) 4, 8,

12 and 24. That Gn can be a cyclic G4 follows from the

fact that every system of transitivity of the G2 contains but two

points. Gn can not be a G4 whose transformations are all of period

2, since if E be one of the elations in such a G 4 ,
the G2 and the G4 have the same

systems of transitivity on -the axis of E. If Gu be of order 8 and contain trans-

formations of period 2 only it must contain two elations, E
x
and E 2 , having the

same axis lt ,
since such a G8 must contain six elations and there are but four

lines other than / through 4. We then have E
1
E 2=E3 a third elation having 1^,

for axis. Since E
1?
E 2 and E 3 have the same center and axis they, together with

the identity, form a group G4 (P). The other three elations in the G8 would be

SEn SE2 and SE 3 ; but since each of these elations has the same systems of tran-

sitivity on lx as S, G„ can not be such a G8 . Accordingly, if Gn be of order 8 it

must contain a cyclic subgroup G4 consisting of the powers of a transformation U
of type III and since U must leave / invariant we have U"^S. Hence U is< of

the form U: x'—x-\-ay-\-b, y'=y-\-a'
2 where a is not zero. If the G8 contain an

elation it must be of the form E: x'=x-\-a 1 y-\-b 1J y'=y where a x is

not zero. If a=ax
the product EU: x'=x^\-b-\-b x -\-i, y'=y-\-a

2
is a

translation different from S. If a is not equal to a
{

the product
EU: x f

=x-\-(a-\-a 1 )y
Jr b-\-b 1 -\-a1a

2
, y'=y-\-a

2
is a transformation of type

III whose square must be identical with S. If (EU) 2
: x'=x-\-

a
x
a2

-\-i, y'=y be identical with S we must have a
Y (i

1

-\-i=i or a
1
a'

2

-\-i=o; but if

tf
1
tf
2
-|-l=l, a1a

2=0 which is impossible since neither a nor ax can be zero,
and if a

1a
2

-\~i=0, a xd
2=i which is impossible since a and ax are different marks

of GF(22
). Hence if Gn be of order 8 it can contain no elations

and must have 3 cyclic subgroups of order 4. Taking U x
: x'=x-\-a 1 y-\-b l , y'"»

y-f-tf,
2 as any other transformation of period 4 than U or U 3

in the G8 we have
UU

X
: x'=x-\-{a-\-a1 )y-\-aa

2
-\-b-\-b^ y'=v+fl

2+<V and U tU: x'=x-\-(a-\-a^ )y

-\-a
2a

x -\-b-\-b 1 , y'=y-\-ar~\-a 1

2
. If a=a^ the product UUj is a translation not

in the G8 . Hence a must be different from a
x and the group, if existent, is not

Abelian and must be of the type* U 4
=l, U x

4
=l, U2—IV, U^U"^

U 4

-1
. Since these conditions are satisfied by any two transformations of the form

U and U lf where a is different from a
x
and neither a nor ax is zero, there are

four such groups G8 having the given G2 as the largest self-conjugate subgroup
of translations.

If Gn be of order 12 it must be simply isomorphic with the G 12 consisting of all

transformations leaving invariant a point on the line '(cf. Ill, p. 32). This is

impossible since the product of the translation in Gn and any homology in

Gn is of period 6. Hence Gn can not be of order 12. If Gn be of order 24 it

must, by Theorem 5, contain exactly 8 transformations of determinant unity and 1G

transformations of determinant i or r. The 8 transformations of determinant

unity form a self-conjugate subgroup and hence the G24 , if existent, must be the
direct product of this G8 and a cyclic G3 consisting of the powers of a homology
H. It was shown above that a G8 whose transformations are all of period 2 con-
tains 3 elations E

lf E/, E/', having the same axis l x and three other elations E
2 ,

E3 ,
E 4 , having for axes the three other lines /2 ,

lz , lA , respectively, through P. H

*Cf Burnside, 1. c, p. 88.
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can not have /, for axis since the G, and the Ga4 would then have the same systems
of transitivity on /,. Also H can not have /

L„ /.,
or /

4 for axis, since if E|

( 1—2,3,4) be the corresponding elation, Ej and H are not commutative and

HEiH 1 would be an elation not in the G8
. Hence the self-conjugate G8 in

the G, 4 can not have all its transformations of period 2. Accordingly, the G8 in

the G.,4 must contain 3 cyclic subgroups of order 4. We may take this self-con-

jugate G8 to be the one consisting of all transformations of the form x'=x-\-ay-\-k,

y'==y-^-a
- where a is any mark of the GF(28

) and k is any mark of the GF(2).
The three transformations in this G8 of the form T: x'=x-\-ay, y'=y-f-/r where
a is not zero are of period 4 and no two belong to the same cyclic Gr The G.J4 .

if existent, must contain a homology of the form H: x'^=x-\-by-\-bic y'=iy-\-c

and, therefore, every product TH : x'=x-)-(ia-\-b)y-\-(a-\-ib)f, y
f

=iy-\-a'
:

-\-c

where b and c are some two chosen marks of the GF(22
). Since TH is of deter-

minant i it is of type II or IV and, hence, (TH) 3
: x'=x-\-i(<fb-\-ac-\-i) . y' -=y

must be identity or the translation S: x'=x-\-i, y'=y for every value of a different

from zero in the GF(22
). But there exist no two marks b and c in the GF(2 L

")

which make i((fb-\-ac-\-i)=m where m is in the GF(2) for every value of a dif

ferent from zero in the GF(2-). Hence, Gn can not be of order 24.

Subgroups having a G 4 (Q) as a self-conjugate subgroup. Let G ra be a sub

group of G2S80 having a G4 (Q) as its largest self-conjugate subgroup of transla-

tions and such that the G 4 (Q) has no system of transitivity which is also a system
of transitivity of the Gm . Selecting the G 4 (Q) as the group of all translations

of the form S: x'=x-\-a, y'=y-\-b, where a and b are marks of the GF(2), and
T is the general collineation (cf. p. 31) in the G., 88 o we have TST" 1

:

x'=x-\-aa 1 -\-bb 1 , y
f

=y-\-aat-\-bbs . Hence if TST" 1

belong to the G4 (Q) ««,-)-

bb,=a' and aa.2 -\-bb._.=b' where a' and b' are in the GF(2). Since these equa-
tions must hold true for every au a,, />,, b., in the Gm no matter what marks of the

GF(2) a' and b' may be it follows that ait a2 , £,, b.z are in the GF(2) and even-

transformation in the Gm is of determinant unity. Consequently, G m can contain

no homology and is at most (4, 1) isomorphic with some group on the line leaving
invariant a pair of points. The possible orders of Gm are, therefore, (cf. p. 32)
12 and 24. The G 4 (Q) leaves each point on / (x^—o) invariant and permutes
the other 36 points in four systems of transitivity each consisting of four points no
three of which are collinear. These four quadrangles are Q,==(0 16 20 18)

Q 2s=(l 14 8 5) ; Q 2=(2 13 6 15) ; Q4=( 9 10 12 11) (cf. Table of alignment,

p. 3). Every transformation in Gm is of the form T: x'=a
1 x-\-b 1 y-\-c l , y'=

n.je-\-bzy-\-ci where a
x , a2 , b it b2 are in the GF(2), and must, therefore, be of type

V (elation, period 2), type Ia (period 3) or type III (period 4). From the forms
of T2

,
T :

\ T4
it appears that every elation in Gm must be of the form

E, : x'—y-\-k, y'=x-\-k, or of the form E.: x'=x-\-y-\-c, y'=y, or of the form
E3 : x'=x, y'=x-j-y-\-d ; every transformation of type I, must be of the form

T, : x'=y-\-m, y'=x^-y-\-n, or of the form T2 : x'=x-|-y-j-r, y'—x-\-s; every
transformation of type III must be of the form U, : x'=y-\- k, y'=x-\-l where /

and k are not the same mark, or of the form IL: x'=x-\-y-\-c l , y'—y-\-ct% or of

the form U„: x'=x-\-d ly y'=x-\-y-\-d2 . If Gm be of order 12 it must be the

direct product of a cyclic G.,(cvc. I8 ) and the G,(Q). But each transformation
of period 3 in Gm must leave one of the quadrangles Qi(i=l, 2, 3, 4) invariant

and permute the other three in cyclic order. Hence some one of these quadrangles
would be a system of transitivity of the (i,_. generated by any Ga (cyc I 3 ) and the

G 4 (Q) and Gm can not be or order 12. If G m be of order 24 it must contain a
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transformation T of period 3 leaving invariant a quadrangle Qa (a=l, 3, 3 or 4).

Every transformation of the form T
1
or T2 is seen to leave invariant the two

points 7==(i 1 i,o) and 19^(/,j,0) on /, and since every translation in the G4 (Q)
leaves every point on / invariant the eight products obtained by multiplying T and
T 2

by the transformations in the G4 (Q) are eight transformations of period 3

leaving Qa invariant. Moreover, G24 can not contain any transformation T t of

period 3 not included among these eight, for the products of T and the three

other transformations leaving Qa invariant and making the same permutation of

points on / as T give the three translations in the G4 (Q) and consequently one
of the products TjT or TjT2 would be a translation not in the G4 (Q). Hence,
the G4 must contain, besides the G4 (Q), 8 transformations of type I.

{ leaving Qa

invariant and some transformation S
a

of period 2 or 4 transforming Qa into one
of the other quadrangles. Let S

}
be of period 2 or 4 interchanging the four quad-

rangles in any order R
1=(QaQb ) (QcQd) where a, b, c, d are the numbers

1, 2, 3, 4 in an arbitrary order. Since half of the transformations of period B in

the G24 must make the transformation R2=(Qa ) (QbQcQd) on the four quad-

rangles Qi(/=1, 2, 3, 4) the G24 would then contain a transformation of period 3

making on Qt(t—1, 2, 3, 4) the transformation R
2R,= (QaQbQc) (Qd) which

has just been shown to be impossible. Hence the G24 can contain no transformation
of period 2 or 4 interchanging the Q t (z'=l, 2, 3, 4) in pairs. Also, G24 can not
contain a transformation of period 4 permuting the Qi (*=1, 2, 3, 4) in cyclic
order for its square would be a transformation of period 2 interchanging them by
pairs. Hence, the G„ 4 must contain a transformation S x of period 2 or 4 which
transforms the Q, (i—1, 2, 3, 4) in the order R3=(QaQb ) (Qc ) (Qd ) ;

but
since R 2R 8=(QaQbQ cQd ) the G24 would then contain transformations permut-
ing the Qi(zWl, 2, 3, 4) in cyclic order which has just been shown to be impossible.
Hence G2880 contains no subgroup Gm having a G4 (Q) as its largest self-conju-

gate subgroup of translations and such that the G4 (Q) has no system of transi-

tivity which is also a system of transitivity of the Gm .

Subgroups containing a self-conjugate G 4 (P). Let Gk be a subgroup of G2SP „

having a G4 (P) as its largest self-conjugate subgroup of translations and such that

the G4 (P) has no system of transitivity which is also a system of transitivity of

the Gk . Selecting the G4 (P) as the group of all transformations of the form
S: x'=x-\-a, y'=y, and T: x'=a

1x-\-b l y-\-c 1 , y
f=a2x-\-b 2y-\-c2 as the general

transformation in the G2880 we have TST" 1
: x /

=x-\-a1a, y'=y-\-aa.,. Hence in

order that TST" 1

may belong to the G4 (P) we must have a 2=o
and if we also have «,=/ each translation in the G4 (P) is self-

conjugate. Hence every transformation in Gk is of the form T
t

:

x f=a
i x-\-b 1 y-\-c l , y'=b.,y-{-c2 . The G4 (P) consists of all transla-

tions having / for axis and 4 =(1,0,0) for center. The G4 (P) has four svstems

of transitivity, ^=(0 1 16 14), /2=3(8 5 18 20), /3=(2 13 10 9), /4ss(16 16 12 11)
and in each system the four points are collinear. From the form of T,

2
it appears

that every elation in Gk is of the form E: x'=x-\-b 1y-\-c1 , y'=y (where b
}

is not

zero) and, consequently, has 4 for center and leaves each ?i(i«==1, 2, 3, 4) invar-

iant. Hence there is no Gk containing translations and elations only. From the
form of T/ it appears that every transformation of type III in Gk is of the form
U: x'=x-j-b 1y-\-c i , v'=y+ f2' where neither b

1
nor c 2 is zero. The 12 trans-

formations for which c2=i make the interchange {lj2 ) (/3 /4 ) ;
the 12 for which

r2=/' make the interchange (IJ^'ilJJ ; and the 12 for which c 2
=r make the inter-

change (/j/J (/3 /2 ). Since the Gk can not leave any ?t (i—1, 2, 3, 4) invariant it
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must either be transitive on the /, or interchange them by pairs.

Suppose Gk to make the interchange (/,/.,) (/.,/4 ). Such a GK can

not contain a homology having / for axis, for the homology would permute three

of the lines /j in cylic order. Hence, the G k would be at most (4, 1)

isomorphic with some group on the line leaving a point invariant and its possible

orders would be (cf. p. 32) 8, 12, 1<>, 24, 48. Since Gk is transitive on 8 points its

order must be divisible by 8 and can not be 12. If Gk be of order 8 and make
the interchange (/,/.,) (/.,/ 4 ) it must contain a transformation of the form U, :

x'=^=x-\-b l y-\-c i , y'=y-|-/. The products of a U, and the transformations in the

G 4 (P) are four transformations of the form U, where Z>, is fixed and r, is any
mark of the GF(2-). These 4 transformations of type III and the transforma-

tions in the G
4 (P) form a group G s which is a Gk . Hence there are three such

subgroups G s (one for each value of b
x ) interchanging the /i(i=l, 2, 'i, 4) in the

order (/,/.,) (/ :i
/
4 ) and similarly 3 subgroups Gs for each of the orders (/,/..)

(A./;) and (lj4 ) (IJ.,)- No Gk can contain more than 8 transformations of the

form U,, since the product of \J
l

: x'=x-\-y-\-cl , v'=y-\- \J / : x ,

=x-\-iy Jrf i ,

y'=y+ /, and \J /' : x'=x+ry+cu y'=y+ 1, is U, U/ U.": *'=*+<-,+», y'=-

y-\-r, which is a translation not in the G 4 (P). The product of any two transfor-

mations of the form U, and U,' is U
1U/=E 1

: x'=x-\-i-y-\- 1 , y'=y which is an

elation having 4 for center. The products of E
4
and the four transformations in the

G.f(P) give all elations of the form E,': x'=x-\-i-y-\-c, y'—y. The product of

any two elations of the form E/ is a translation in the G 4 (P). Also all prod-
ucts of transformations of the form E/ with transformations of the form \J l

or

U,' are of the form U,' or U, respectively. Hence, the 12 transformations of

the forms U,, U/ and E,' together with the G 4 (P) form a Group G,„ which is

a Gk . Obviously there may be two other such groups G 1(5 making the interchange

Ci OCa O and similarly •'* groups G,„ making the interchange (,/, l3 )(la /,)

and 3 groups G M! making the interchange (/, l
4 )(l-2 /

:t ). Also, since the product
of an elation of the form E: x'=x-\-by-\-c, y'=y and a transformation of type
III of the form U: x'=x-\-by-\-cu y'=y-\-c, is EU : x ,

=x-\-c 1 -\- bc 2 -{-c,y'=y-\-c.,,

which is a translation not in the G,( P), there is no other type of group of order
lfi which can be a Gk interchanging the l\ by pairs.

A Gk of order 24 or 4S which makes the interchange (/,/..)(/.,/,) must con-

tain transformations of period 'J. Every such transformation would leave each

/i invariant and hence would be a homology H having 4 for center. Such a Gk

must also contain some transformation T making the interchange (/, /;>)(/., /
4 ).

But T can not be of type II, for in that case T3 would be a translation not in the

G 4 (P), and T can not be of type III, for in that case HT would be such a trans-

formation of type II. Hence there is no Gk of order 24 or 48 interchanging the

l\ by pairs..

No Gk can contain a homology H having / for axis; for, if P, be the center of

H, Gk must contain some transformation T transforming P, to some point P/
which is not collinear with P, and 4. Since H can not leave P,' invariant HT
and TH transform P, to different positions and. hence, H and T are not commu-
tative THT' ,

=^-H, is, therefore, a homology having P, for center and one of

the products HH, or H 2

H, is a translation not in the G
4 (P) since it would have

for center the point where the line P,P/ cut /. Accordingly G k is at most (4, 1)

isomorphic with some group on the line leaving a point invariant and its possible
orders are 8, 12, 16, 24 or 48. If G k be transitive on the /, it is transitive on all

points not on / and its order must, therefore, be divisible by 1<>. Consequently such

a transitive Gk must be of order 16 or 48. If such a Gk be of
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order 16 it must contain two transformations of type III, U. :

;(•'=.*•-f-^iV+^n y'=y-\-clt
and U 2 : x'=x-\-a2y-\-b 2 , y'=y-\-c 2 where c, and c2 are

neither one zero and are distinct from each other. The product UjU 2 is of tihe

form U 3 : x'=x-\-a3y-\-b 3 , y'=y-\-c 3i
where a3 is different from a

x
and a2 and

c3 is different from c
t and c2 . Also a

1
must be distinct from a2 , for otherwise U3

is a translation not in the G 4 (P). All products U 2U 3 are of the form \J
1
and

all products 1-1,113 are of the form U,. Also, the square of each Uj(/=1, 2, 3)
is a translation in the G4 (P). Hence 12 transformations, 4 each of the forms U t ,

U 2 ,
U 3 ,

such that a
x , a.,, a3 are no two the same mark and cv c 2 , c3 , are no two.

the same mark, form, together with the G4 (P) a group and the only type of group

G, 6 which is a transitive Gk of order 16. Since a
x
and c

Y may each be chosen in 3

different ways and a2 and c 2 may each then be chosen in 2 different ways thcrfc

are 36 such groups G]0 having the given G 4 (P) as its largest self-conjugate sub-

group of translations.

If Gk be a transitive group of order 48 it must contain a transformation T of

period 3. If T be a homology it must either have some line through 4 for axis or

have 4 for center. That T can not be a homology, having / for axis has been

shown above. That T can not be a homology having any other line through 4 for

axis follows from the fact that if S be one of the translations in the G4 (P) TS is

of type II and (TS)
3

is a translation not in the G4 (P). If T be a homology

having 4 for center it leaves each /
t ( z==l, 2, 3, 4) invariant. Since

the G48 must contain a subgroup G 16 which can have no transforma-

tion other than identity in common with the cyclic G3 generated by T, the

group J
G16 ,

G3 [
is the G48 and leaves each /i(z=l, 2, 3, 4) invariant unless

the G ]6 contain a transformation U of type III having 4 for center and having for

axis a line through P3 some point on / different from Pj and P2 . Hence the G lS

would contain at least 24 distinct homologies and since the products of these by U
give 24 distinct transformations of type II the G48 would contain more than 48

transformations. Hence a transitive Gk of order 48 can not contain a homology.
Since T can not be a homology it must be of type I 3 having for vertices of its

invariant triangle a point A not on / and two points, 4 and some other point Pr

other than 4 on /. The cyclic G3 generated by T together with the G4 (P) gen-
erates a G 12 consisting of all transformations of determinant unity leaving invari-

ant the points 4 and F
1
and the line /a joining A to 4. But the G48 must contain

a subgroup Gi C having no transformation other than identity in common with the

cyclic G3 generated by T. Hence the G ]0 and the cyclic G3 would generate a G48

leaving /a invariant unless the G16 contain a transformation U of type III inter-

changing /a with some other line /b through 4. If the other two lines tihrough 4

be designated as lc and /d ,
U makes the transformation U=(/a/b ) (/Jd) ^n

these lines and T makes the transformation T=(/a ) (IbhU)- Hence TU=
(IJJb)(U) is of type I

3 leaving /d invariant and UT= ( /a/b/d ) ( /c ) is of type

1^ leaving lc invariant. Also, the product of TU and UT is a transformation of

type I 3 leaving the line /d invariant. Each of these transformations of type I 3 generates
a cyclic G3 , which, taken with the G4 (P) generates a G12 containing 8 transfor

mations of type I 3 . These 32 transformations of type I 3 are such that each point
not on / is an invariant point of two of them and each point on / (other than 4)

is an invariant point of 8 of them. Hence the self-conjugate G 1G can not contain

an elation E
; for, if T' be a transformation of type I 3 having an invariant point

on the axis of E, ET' would be a transformation of type I 3 not among the 32

above named. The G 16 must, therefore, consist of 12 transformations of type III
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and the G4 (P). Taking the G 10 as all transformations of the form U : x'=x-\-ay-\-b>

y'=y-\-a and the cylic G.
t generated hy a transformation of type I 3 as all transfor-

mations of the form T: x'=mx, y'=n , where mn—i and neither m nor n is

unity, the products UT: x'=mx-\-any-\-b, y'=ny-\-a and TU : x'=mx-\-amy-\-
</nb, y'=ny-\-na are 32 transformations of type I 3 as above described. Also, it i>

readily verified that the product of any two transformations of the form U, UT
and TU is of the form U, UT or TU. Hence they form a group G 48 which is a

transitive Gk .

Subgroups containing a self-conjugate G s . There remains to be determined

every subgroup G t of G2880 which leaves fixed no point not on /, has a G8 as its

largest self-conjugate subgroup of translations and has no system of transitivity which

is also a system of transitivity of the G8 . A G8 of translations consists of a G4 (P)

(all translations of which have for center the same point P on /) and 4 other

translations each having a different center from any other in the G 8 . The Gs

leaves invariant besides / and P a pair of lines through P. Hence the G8 has two

systems of transitivity of 8 points each and a G t must be transitive on the 16 points

not on /. No G t can contain a homology H having / for axis ; for, if T be a trans-

lation in the G8 having a point P' different from P for center H and T are not

commutative (since HT and TH transform the center of H to different positions)

and HTH" 1
is a translation having P' for center and not in the G8 . Hence, a G t

contains no transformation leaving / pointwise invariant except the translations in

the G8 and is at most (8, 1) isomorphic with some group leaving invariant a point
on the line. Its possible orders are, therefore, (cf. p. 32) 16, 32, 48 and 90. Tak-

ing P as the point 4=(/,a,o) the G4 (P) in the G8 becomes the four translations

of the form S: x'=x-\-a,y'=y and the four other translations in the G„ may be

taken as the four translations of the form Sj : x'=x-\-a, y'=y-|-/. Since a G t can

contain no translation not in the G8 a translation of the form S must be trans-

formed into a translation of the form S, and a transformation of the form S, must
be transformed into a translation of the form S

t by every transformation in G t . It

has already appeared above that the first of these conditions requires that every
transformation in a G t shall be of the form Tt : x'=a

lx-\-b l y-\-c l
, y'=b.,y-\-i...

Transforming Sj through T 1 gives TS,^" 1
: x'=x-\-aa lt y'=y-\-b2 and hence «,=--l,

b.
1
=l and every transformation in G t is of the form T2 ": x'—x-{-b iy-\-c l , y'=y-\-c...

If b
y
=o or if c 2=o T2 is of period 2. Hence, every elation in a G t is of the form

E: x'=x-\-b 1y-\-c1 ,y'=y, where b
t

is not zero. If neither b
x
nor c2 is zero T, is

of period 4. Accordingly a G
t
can contain only transformations of period 2 or 1

and must be of order 16 or 32.

The two systems of transitivity of the G s are left invariant by every elation of

the form E and hence a G L
must contain a transformation U of type III. Under

the G 8 of translations the pair of lines y=o, y«=i is one system of transitivity and the

pair of lines y=i, y=r (equations in non-homogeneous coordinates) is the other

system. Hence U must be of the form Uj : x f

==x-{-ay-\-b, y'=y-\-i or of the form
U 2 : x'=x-\-ay-\-b, y

f

==y-\-r- But the product of a translation of the form S,
and a transformation of the form \J

1
or U 2 is of the form Us or U,, respectively,

and hence every G t must contain transformations of both forms. A G
t of order

16 must, therefore, contain, besides the Q H of translations, 4 transformations of the

form U, and 4 of the form U 2 where a has the same value for all of these trans-

formations of type III. Since every product U,U 2 and U 2U, is a translation fn

the G., these 16 transformations form a Group G„ which is a (i
t

. Since there are

3 choices for a there are 3 such groups G, fl having the given G s as the largest sub-
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group of translations. Also, it appears from the above that every G t must contain

at least one such G1C as a subgroup. This G ]6 will be taken as the subgroup con-

sisting of the 8 translations in the G8 ,
4 transformations of the form U/: x'=x-\-

y-\-c, y'=y-\-i and the four transformations of the form U/ : x'=x-)-y-\-c,

j/=_y-|-r. For convenience this G16 will be referred to as the group G'.

A G t of order 32 must contain some transformation T of period 2 or 4 not in

the subgroup of order 16 taken as G'. If T be of period 2 it must be of the form

E: x /

=x-\-ay Jr b, y'=y. The products U/E: x'=xJ
r {a-\-i)y-[-b-\-cJ

y'=yJr i> and U/E: x'=x-\-.(a-\-i)y-\-b-\-c, y'=y-\-i~ are translations not in th^

G8 of translations if a=i. If et=*i, the G32 must contain 4 transformations of

type III of the form U/': x'=x-\-ry-\-m, y'=y+z, and 4 of the form

U 2": x f

=x-\-ry-\-m, y'=y-\-i'. Also, the products of E and the translations of

the form S
1
introduce 4 transformations of the form U 3 : x f

=-x-\r iy-\-b, y'=y-\- r.

Thus are determined, besides the 8 translations in the G8 ,
4 transformations of each

of the forms E, U/, U," and U
;i

. These are all of the form U: x'=x-{-ay-\-b,

y
/

=-j.-|_ f where c=i or r if o=i or r and c=o or / if o— or i. Taking Ut :

x'=.x--j-tf 1 };-|-Z> 1 , y'=y-\-Ci as a second transformation of the form U the product

is UU a
: x'=x-\-(a 1 -\-a)y-\-ac1 -{-b i -\-b, y'=y+f-)-r 1

. If o=o or a
x
=o or \i

0=0-1 it may be verified by inspection that this product is one of the given forms.

For the other possibilities the following table gives the results:

a
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5. Every subgroup of the group G004ao of all projective collineations in the

PG(2,2
2
), except a self-conjugate G20j60 leaves invariant a real figure [real with-

in the PG(2f2-)] or an imaginary triangle.

(). There are 8 kinds of groups leaving invariant an imaginary triangle and
their list is given in Theorem 11.

7. All configurations in tlie PG(2,2
2
) and the groups characterizing them are

determined. These groups include the finite groups of the ordinary projective

plane. Consequently, the simple G360 ,
the Hessian (j L,,,. and the simple G,M are

all subgroups of the Ge0480 and within the PG(2,2
2
) the geometric invariant of

each is a real configuration.
8 The subgroups of the G., MS „ which leaves a line invariant are chiefly (1,1)

or (3,1) isomorphic with groups on the line, but certain groups of higher isomor-

phism are present and are determined.
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